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Abstract

This report details conditions under which the Functional Convolution Model de-

scribed in Asencio et al. (2013) can be identified from Ordinary Least Squares estimates

without either dimension reduction or smoothing penalties. We demonstrate that if

the covariate functions are not spanned by the space of solutions to linear differen-

tial equations, the functional coefficients in the model are uniquely determined in the

Sobolev space of functions with absolutely continuous second derivatives.

Asencio et al. (2013) introduced the Functional Convolution Model (FCM) in which for

each observation i = 1, . . . , n a functional response Yi(t) depends on the short-term history of

one or more functional covariates Xij(t), j = 1, . . . , p which are measured on the same time

domain t ∈ [0, Ti] along with scalars zik for k = 1, . . . , d. This is expressed mathematically
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as

yi(t) = β00 +
d∑
j=1

β0kzik +

p∑
j=1

∫ αj

0

βj(u)xij(t− u)du+ εi(t), i = 1, . . . , n. (1)

Here yi(t) responds to the past αj time units of xij via a functional linear model (Ramsay

and Silverman, 2005) and this relationship is constant over t. The εi(t) are assumed to be

mean-zero stochastic processes with stationary covariance. Note that while the yi(t) and the

xij(t) must share the same time domain, this domain needs not be the same across different

observations. We have parameterized the model so that βj(0) represents the instantaneous

effect of xij(t) on the response at time t. β0 = (β00, β01, . . . , β0d) represent coefficients for

scalar covariates including the intercept.

An estimate of the parameters in the FCM via Ordinary Least Squares (OLS) was pro-

posed, obtaining estimates for β(u) = (β0, β1(u), . . . , βp(u)) that minimize

SSE(β) =
n∑
i=1

∫ Ti

α∗

(
yi(t)−

d∑
j=1

β0jzij −
p∑
j=1

∫ t

t−αj

βj(u)xij(t− u)du

)2

dt

for α∗ = max(α1, . . . , αp). This has been chosen so that the range of t in the outer integral

ensures that the range of t−u within the squared term does not go below 0. To this criterion,

Asencio et al. (2013) added smoothing penalties for each of the βj(u) and represented them

via a basis expansion.

The identifiability of the FCM under the OLS without penalization, and with arbitrar-

ily complex basis expansions, is not clear. The model can be placed between the scalar

2



response model yi = β0 +
∫
β1(t)xi(t)dt + εi in which β1(t) cannot be identified without

smoothing or dimension reduction and the concurrently linear model for functional responses

yi(t) = β0(t) + β1(t)xi(t) + εi(t) in which β0(t) and β1(t) can be obtained from a linear re-

gression at each time t (although smoothing can still serve to reduce variance). The purpose

of this report is to investigate under what circumstances both smoothing penalty and basis

expansion can be removed. That is, restricting the βj(u) to lie in a Sobolev class of functions,

under what conditions does SSE(β) have a unique minimum without further restructions?

In general, the design of covariate functions in functional data analysis has received lit-

tle attention. The functional convolution models studied here present a challenge in that

identifiability depends on the finite-sample design of the covariates.

For this report, we assume our covariate processes βj(t) lie in the Sobolev space W [0, αj]

of functions defined on [0, αj] for which all second derivatives are absolutely continuous.

For convenience, we also assume that the yi(t) and xi(t) have been centered by their integral

averaged over all observations and ignore β0. We also assume that the Yi have been centered

by their time-series mean and no other scalar covariates are present in order to remove the

intercept from the model. Within this space, minimizing SSE(β) is equivalent to setting its

Gateaux derivative to zero; that is, solving the variational problem

< γ, G[β] >= F (γ), ∀γ = (γ1, . . . , γp) ∈ W [0, α1]⊗ · · · ⊗W [0, αp] (2)
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where

F (γ) =

p∑
j=1

n∑
i=1

∫ αj

0

γj(u)

∫ Ti

α∗
xij(t− u)yi(t)dtdu,

and

G[β] =

p∑
j,k=1

n∑
i=1

∫ αj

0

∫ Ti

α∗
xik(t− v)xij(t− u)dtβj(u)du.

where the inner product is taken as the product L2 inner product on square-integrable

functions

< γ,β >=

p∑
j=1

∫ αj

0

γj(u)βj(u)du.

The identification of the OLS estimates is now equivalent to the invertibility of G. In

particular, β will be uniquely identified if

< γ, G[β] >= 0, ∀γ ⇒ β = 0

and in particular if

< β, G[β] >=

∫ Tj

α∗

n∑
i=1

[∫ αj

0

xij(t− v)βj(v)dv

] [∫ αj

0

xij(t− u)βj(u)du

]
dt > 0 (3)

for all j and all non-zero βj.

In particular, we can let ξ1, ξ2, . . . form a basis for W [0, α1] ⊗ · · · ⊗ W [0, αp] with

ξj = (ξj1, . . . , ξjp) and (3) reduces to the requirement that for every j and l,

∫ αj

0

ξjl(u)xij(t− u)du 6= 0 (4)
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for t in a subset of [α∗, Ti] of positive measure for at least one i. This condition is not readily

checked, particularly in real-world applications since it requires checking an infinite collection

of inner-products; however the non-identifiability of a design can be readily assessed. Because

of this Asencio et al. (2013) employed smoothing parameters to ensure the identifiability of

their estimates. However, it is possible to characterize designs such that the collection

xijt(u) = xij(t− u)

spans a finite-dimensional space as t is varied; i.e. for which there is a finite collection of

functions η1(u), . . . , ηK(u) such that

xijt(u) =
K∑
k=1

ck(t)ηk(u)

for all t. This set of self-similar functions can be expressed as solutions to a linear differential

equation. In the lemma below we restrict to a single real-valued function for the sake of clarity

and set αj = 1

Lemma 1. Let x(t) have continuous first derivatives, then x satisfies

x(t+ u) =
K∑
k=1

ζk(t)ηk(u) (5)

for all t and ηk : [0, 1]→ R, if and only if

x(t) =
K∑
k=1

ckt
mkeakt sin(bkt+ dk) (6)

for real-valued constants (ak, bk, ck, dk), and integers mk, k = 1, . . . , K.
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Proof. We observe that

x(t+ u+ dt) =
K∑
k=1

ζk(t+ dt)ηk(u) =
K∑
k=1

ζk(t)ηk(u+ dt)

and thus

x′(t+ u) =
K∑
k=1

ζ ′k(t)ηk(u) =
K∑
k=1

ζk(t)η
′
k(u) (7)

where x′(·) is the derivative taken with respect to its argument. We can now examine which

ζk satisfy the second equality in (7) by restricting to a finite set of values for u. Defining a

set of evaluation points ul = (l − 1)/K for k = 1, . . . , K we can produce matrices

Xlk = ηk (ul) , Ẋ = η′k (ul) .

Note that these do not depend on t. The last equality in (7) restricted to u1, . . . , uK now

defines the differential equation

d

dt
η =

[
X−Ẋ

]
η (8)

where X− is a generalized inverse. Solutions to (8) have general form of (6) (e.g., Borelli

and Coleman, 2004), and thus x(t) must at least be of this form. It is easy to check that

any function of the form (6) satisfies (5) for some K and (ζk, ηk, k = 1, . . . , K), completing

the converse implication.

From this we directly obtain the following
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Corollary 1. The variational problem (2) has a unique solution in W [0, α1]⊗· · ·⊗W [0, αp]

if and only if

n∑
i=1

∫ Ti

α∗

xij(t)− Kij∑
k=1

cijkt
mijkeaijkt sin(bijkt+ dijk)

2

dt > 0

for each j and any finite choice of Kij, aijk, bijk, cijk, dijk and mijk.

It is not difficult to provide example designs that satisfy (4). Consider the basis of

periodic functions on [0, 1] given by ξk(u) = sin(2kπt) then taking x(t) to be defined on

[0, 1], say, with

x(t) =
∑

2−kξk(t)

has non-zero inner product on [0, 1] with ξk(u) for each k. We note that the range of x(t)

need not be restricted to [0, 1]. However, between the finite-dimensional design described

in Lemma 1 and the identifiable design, it is possible to find xi(t) that is orthogonal to an

infinite dimensional subspace. Continuing our example, setting

x̃ =
∑

2−4kξ2k(t)

will yield < x̃, ξk >= 0 for all k odd provided the domain of x is of integer length. Evalu-

ating identifiability based on finite-dimensional approximations as given, for example in the

appendix of Asencio et al. (2013) is straightforward. However, it seems more challenging to

provide a protocol for designing experiments for which this model will be employed.
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Beyond conditions for identifiability, the implication of these calculations for the conver-

gence rates of the FCM remain un-investigated. As an alternative to the OLS formulation,

we can down-sample the data in the FCM to consider only the values of yi(t) at U intervals.

That is we observe that yi(lU) for l = 1, . . . , ni = Ti/U taken at the discrete times lU exactly

follow a functional linear model. Hence as either Ti →∞ or n→∞, results in Zhang and Yu

(2008) provide the consistency of our estimates when combined with smoothing penalties.

Although such penalties needs not be required for the FCM, they were employed in Asencio

et al. (2013) and we speculate that in fact the convergence rates that can be obtained for

the FCM are no better than the functional linear model.
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