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Functional Data Analysis

Some References

Three references for this course (all Springer)

Ramsay & Silverman, 2005, “Functional Data Analysis”

Ramsay & Silverman, 2002, “Applied Functional Data
Analysis”

Ramsay, Hooker & Graves, 2009, “Functional Data Analysis in
R and Matlab”

More specialized monographs:

Ferraty & Vieux, 2002, “Nonparametric Functional Data
Analysis”

Bosq, 2002, “Linear Processes on Function Spaces”

See also a list of articles at end.
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Functional Data Analysis

Assumptions and Expectations

Presentation philosophy:

Geared towards practical/applied use (and extension) of FDA

Computational tools/methods: “How can we get this done?”

Focus on particular methods fda library in R; alternative
approaches will be mentioned.

Some pointers to theory and asymptotics.

Assumed background and interest:

Applied statistics, including some multivariate analysis.

Familiarity with R

Smoothing methods/non-parametric statistics covered briefly.

Assumed interest in using FDA and/or extending FDA
methods.
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Introduction

What is Functional Data?

What are the most obvious features of these data?

quantity

frequency (resolution)

similarity

smoothness
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Introduction

What Is Functional Data?
Example: 20 replications, 1401 observations within replications, 2
dimensions

Immediate characteristics:

High-frequency
measurements

Smooth, but complex,
processes

Repeated observations

Multiple dimensions

Let’s plot ‘y’ against ‘x’
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Introduction

Handwriting Data
Measures of position of nib of a pen writing "fda". 20 replications,
measurements taken at 200 hertz.
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Introduction

What Is Functional Data?
Functional data is multivariate data with an ordering on the

dimensions. (Müller, (2006))

Key assumption is smoothness:

yij = xi (tij) + εij

with t in a continuum (usually time), and xi (t) smooth

Functional data = the functions xi (t).

Highest quality data from monitoring equipment

Optical tracking equipment (eg handwriting data, but also for
physiology, motor control,...)

Electrical measurements (EKG, EEG and others)

Spectral measurements (astronomy, materials sciences)

But, noisier and less frequent data can also be used.
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Introduction

Weather In Vancouver
Measure of climate: daily precipitation and temperature in
Vancouver, BC averaged over 40 years.

Temperature is noisy: precipitation even more so, but a smooth
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Introduction

Canadian Weather Data
Average daily temperature and precipitation records in 35 weather
stations across Canada (classical and much over-used)

Temperature Precipitation

Interest is in variation in and relationships between smooth,
underlying processes.
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Introduction

Medfly Data
Records of number of eggs laid by Mediterranean Fruit Fly
(Ceratitis capitata) in each of 25 days (courtesy of H.-G. Müller).

Total of 50 flies

Assume eggcount
measurements relate to
smooth process governing
fertility

Also record total lifespan of
each fly.

Would like to understand
how fecundity at each part
of lifetime influences
lifespan.
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Introduction

What Are We Interested In?

Representations of distribution of functions

mean
variation
covariation

Relationships of functional data to

covariates
responses
other functions

Relationships between derivatives of functions.

Timing of events in functions.
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Introduction

What Are The Challenges?

Estimation of functional data from noisy, discrete observations.

Numerical representation of infinite-dimensional objects

Representation of variation in infinite dimensions.

Description of statistical relationships between infinite
dimensional objects.

n < p = ∞, and use of smoothness.

Measures of variation in estimates.
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Representing Functional Data

Representing Functional Data

14 / 181

Representing Functional Data

From Discrete to Functional Data

Represent data recorded at discrete times as a continuous function
in order to

Medfly record 1 Allow evaluation of record
at any time point
(especially if observation
times are not the same
across records).

Evaluate rates of change.

Reduce noise.

Allow registration onto a
common time-scale.
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Representing Functional Data

From Discrete to Functional Data
Two problems/two methods

1 Representing non-parametric continuous-time functions.
Basis-expansion methods:

x(t) =
K∑

i=1

φi (t)ci

for pre-defined φi (t) and coefficients ci .
Several basis systems available: focus on Fourier and B-splines

2 Reducing noise in measurements
Smoothing penalties:

c = argmin

n∑

i=1

(yi − x(ti ))
2
+ λ

∫
[Lx(t)]

2
dt

Lx(t) measures “roughness” of x

λ a “smoothing parameter” that trades-off fit to the yi and
roughness; must be chosen.
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Representing Functional Data: Basis Expansions

1. Basis Expansions
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Representing Functional Data: Basis Expansions

Basis Expansions
Consider only one record

yi = x(ti ) + εi

represent x(t) as

x(t) =
K∑

j=1

cjφj(t) = Φ(t)c

We say Φ(t) is a basis system for x .

Terms for curvature in linear regression

yi = β0 + β1ti + β2t
2

i + β3t
3

i + · · · + εi

implies
x(t) = β0 + β1t + β2t

2 + β3t
3 + · · ·

Polynomials are unstable; Fourier bases and B-splines will be more
useful.
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Representing Functional Data: Basis Expansions

The Fourier Basis
basis functions are sine and cosine functions of increasing
frequency:

1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), . . .

sin(mωt), cos(mωt), . . .

constant ω = 2π/P defines the period P of oscillation of the
first sine/cosine pair.
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Representing Functional Data: Basis Expansions

Advantages of Fourier Bases

Only alternative to polynomials until the middle of the 20th
century

Excellent computational properties, especially if the
observations are equally spaced.

Natural for describing periodic data, such as the annual
weather cycle

BUT representations are periodic; this can be a problem if the data
are not.

Fourier basis is first choice in many fields, eg signal processing.
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Representing Functional Data: Basis Expansions

B-spline Bases

Splines are polynomial segments joined end-to-end.

Segments are constrained to be smooth at the joins.

The points at which the segments join are called knots.

System defined by

The order m (order = degree+1) of the polynomial
the location of the knots.

Bsplines are a particularly useful means of incorporating the
constraints.

See de Boor, 2001, “A Practical Guide to Splines”, Springer.
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Representing Functional Data: Basis Expansions

Splines
Medfly data with knots every 3 days.

Splines of order 1: piecewise constant, discontinuous.
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Representing Functional Data: Basis Expansions

Splines
Medfly data with knots every 3 days.

Splines of order 2: piecewise linear, continuous
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Representing Functional Data: Basis Expansions

Splines
Medfly data with knots every 3 days.

Splines of order 3: piecewise quadratic, continuous derivatives
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Representing Functional Data: Basis Expansions

Splines
Medfly data with knots every 3 days.

Splines of order 4: piecewise cubic, continuous 2nd derivatives
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Representing Functional Data: Basis Expansions

An illustration of basis expansions for B-splines

Sum of scaled basis functions results in fit.
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Representing Functional Data: Basis Expansions

Properties of B-splines

Number of basis functions:

order + number interior knots

Order m splines: derivatives up to m − 2 are continuous.

Support on m adjacent intervals – highly sparse design matrix.

Advice

Flexibility comes from knots; derivatives from order.

Theoretical justification (later) for knots at observation times.

Frequently, fewer knots will do just as well (approximation
properties can be formalized).
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Representing Functional Data: Basis Expansions

Other Bases in fda Library

Constant φ(t) = 1, the simplest of all.

Monomial 1, x , x2, x3, . . . , ..., mostly for legacy reasons.

Power tλ1 , tλ2 , tλ3 , . . ., powers are distinct but not
necessarily integers or positive.

Exponential eλ1t , eλ2t , eλ3t , . . .

Other possible bases to represent x(t):

Wavelets especially for sharp, local features (not in fda)

Empirical functional Principal Components (special topics)
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Representing Functional Data: Smoothing Penalties

2. Smoothing Penalties
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Representing Functional Data: Smoothing Penalties

Ordinary Least-Squares Estimates

Assume we have observations for a single curve

yi = x(ti ) + ε

and we want to estimate

x(t) ≈
K∑

j=1

cjφj(t)

Minimize the sum of squared errors:

SSE =
n∑

i=1

(yi − x(ti ))
2 =

n∑

i=1

(yi − Φ(ti )c)
2

This is just linear regression!
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Representing Functional Data: Smoothing Penalties

Linear Regression on Basis Functions

If the N by K matrix Φ contains the values φj(tk), and y is
the vector (y1, . . . , yN), we can write

SSE (c) = (y − Φc)T (y − Φc)

The error sum of squares is minimized by the ordinary least

squares estimate

ĉ =
(
Φ

T
Φ

)−1

Φ
Ty

Then we have the estimate

x̂(t) = Φ(t)ĉ = Φ(t)
(
Φ

T
Φ

)−1

Φ
Ty
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Representing Functional Data: Smoothing Penalties

Smoothing Penalties

Problem: how to choose a basis? Large affect on results.

Finesse this by specifying a very rich basis, but then imposing
smoothness.

In particular, add a penalty to the least-squares criterion:

PENSSE =

n∑

i=1

(yi − x(ti ))
2 + λJ[x ]

J[x ] measures “roughness” of x .

λ represents a continuous tuning parameter (to be chosen):

λ ↑ ∞: roughness increasingly penalized ,x(t) becomes
smooth.
λ ↓ 0: penalty reduces, x(t) fits data better.
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Representing Functional Data: Smoothing Penalties

What do we mean by smoothness?
Some things are fairly clearly smooth:

constants

straight lines

What we really want to do is eliminate small “wiggles” in the data
while retaining the right shape

Too smooth Too rough Just right
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Representing Functional Data: Smoothing Penalties

The D Operator

We use the notation that for a function x(t),

Dx(t) =
d

dt
x(t)

We can also define further derivatives in terms of powers of D:

D2x(t) =
d2

dt2
x(t), . . . ,Dkx(t) =

dk

dtk
x(t), . . .

Dx(t) is the instantaneous slope of x(t); D2x(t) is its
curvature.

We measure the size of the curvature for all of x by

J2[x ] =

∫ [
D2x(t)

]2
dt
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Representing Functional Data: Smoothing Penalties

The Smoothing Spline Theorem

Consider the “usual” penalized squared error:

PENSSEλ(x) =
∑

(yi − x(ti ))
2 + λ

∫ [
D2x(t)

]2
dt

The function x(t) that minimizes PENSSEλ(x) is

a spline function of order 4 (piecewise cubic)
with a knot at each sample point ti

Cubic B-splines are exact; other systems will approximate solution
as close as desired.
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Representing Functional Data: Smoothing Penalties

Calculating the Penalized Fit

When x(t) = Φ(t)c, we have that

∫ [
D2x(t)

]2
dt =

∫
cT

[
D2Φ(t)

] [
D2Φ(t)

]T
cdt = cTR2c

[R2]jk =
∫

[D2φj(t)][D
2φk(t)]dt is the penalty matrix.

The penalized least squares estimate for c is n

ĉ =
[
Φ

T
Φ + λR2

]−1

Φ
Ty

This is still a linear smoother:

ŷ = Φ

[
Φ

T
Φ + λR2

]−1

Φ
Ty = S(λ)y
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Representing Functional Data: Smoothing Penalties

More General Smoothing Penalties

D2x(t) is only one way to measure the roughness of x .

If we were interested in D2x(t), we might penalize D4x(t).

What about the weather data? We know temperature is
periodic, and not very different from a sinusoid.

The Harmonic acceleration of x is

Lx = ω2Dx + D3x

and L cos(ωt) = 0 = L sin(ωt).

We can measure departures from a sinusoid by

JL[x ] =

∫
[Lx(t)]2 dt
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Representing Functional Data: Smoothing Penalties

A Very General Notion

We can be even more general and allow roughness penalties to use
any linear differential operator

Lx(t) =

m∑

k=1

αk(t)Dkx(t)

Then x is “smooth” if Lx(t) = 0.

We will see later on that we can even ask the data to tell us what
should be smooth.

However, we will rarely need to use anything so sophisticated.
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Representing Functional Data: Smoothing Penalties

Linear Smooths and Degrees of Freedom

In least squares fitting, the degrees of freedom used to smooth
the data is exactly K , the number of basis functions

In penalized smoothing, we can have K > n.

The smoothing penalty reduces the flexibility of the smooth

The degrees of freedom are controlled by λ. A natural
measure turns out to be

df (λ) = trace [S(λ)] , S(λ) = Φ

[
Φ

T
Φ + λRL

]−1

Φ
T

Medfly data fit with 25 basis functions, λ = e4 resulting in
df = 4.37.
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Representing Functional Data: Smoothing Penalties

Choosing Smoothing Parameters: Cross Validation
There are a number of data-driven methods for choosing smoothing
parameters.

Ordinary Cross Validation: leave one point out and see how
well you can predict it:

OCV(λ) =
1

n

∑ (
yi − x−i

λ (ti )
)2

=
1

n

∑ (yi − xλ(ti ))
2

(1 − S(λ)ii )2

Generalized Cross Validation tends to smooth more:

GCV(λ) =

∑
(yi − xλ(ti ))

2

[trace(I − S(λ))]2

will be used here.

Other possibilities: AIC, BIC,...
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Representing Functional Data: Smoothing Penalties

Generalized Cross Validation
Use a grid search, best to do this for log(λ)

Smooth Rough

Right GCV
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Representing Functional Data: Smoothing Penalties

Alternatives: Smoothing and Mixed Models

Connection between the smoothing criterion for c:

PENSSE(λ) =
n∑

i=1

(yi − cTΦ(ti ))
2 + λcTRc

and negative log likelihood if c ∼ N(0, τ2R−1):

log L(c|y) =
1

2σ2

n∑

i=1

(yi − cTΦ(ti ))
2 +

1

2τ2
cTRc

(note that R is singular – must use generalized inverse).

Suggests using ReML estimates for σ2 and τ2 in place of λ.

This can be carried further in FDA; see references.
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Representing Functional Data: Smoothing Penalties

Alternatives: Local Polynomial Regression

Alternative to basis expansions.

Perform polynomial regression, but only near point of interest

(β̂0(t), β̂1(t)) = argmin
β0,β1

N∑

i=1

(yi − β0 − β1(t − ti ))
2 K

(
t − ti

λ

)

Weights (yi , ti ) by distance from t

Estimate x̂(t) = β̂0(t), D̂x(t) = β̂1(t).

λ is bandwidth: how far away can (yi , ti ) have influence?
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Representing Functional Data: Smoothing Penalties

Summary

1 Basis Expansions
xi (t) = Φ(t)ci

Good basis systems approximate any (sufficiently smooth)
function arbitrarily well.
Fourier bases useful for periodic data.
B-splines make efficient, flexible generic choice.

2 Smoothing Penalties used to penalize roughness of result
Lx(t) = 0 defines what is “smooth”.
Commonly Lx = D2x ⇒ straight lines are smooth.
Alternative: Lx = D3x + wDx ⇒ sinusoids are smooth.
Departures from smoothness traded off against fit to data.
GCV used to decide on trade off; other possibilities available.

These tools will be used throughout the rest of FDA.

Once estimated, we will treat smooths as fixed, observed data
(but see comments at end).
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Exploratory Data Analysis

Exploratory Data Analysis
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Exploratory Data Analysis

Mean and Variance
Summary statistics:

mean x̄(t) = 1

n

∑
xi (t)

covariance
σ(s, t) = cov(x(s), x(t)) = 1

n

∑
(xi (s) − x̄(s))(xi (t) − x̄(t))

Medfly Data:
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Exploratory Data Analysis

Correlation

ρ(s, t) =
σ(s, t)√

σ(s, s)
√

σ(t, t)

From multivariate to functional data: turn subscripts j , k into
arguments s, t.
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Exploratory Data Analysis

Functional PCA

Instead of covariance matrix Σ, we have a surface σ(s, t).

Would like a low-dimensional summary/interpretation.

Multivariate PCA, use Eigen-decomposition:

Σ = UTDU =

p∑

j=1

djuju
T
j

and uT
i uj = I (i = j).

For functions: use Karhunen-Loève decomposition:

σ(s, t) =
∞∑

j=1

djξj(s)ξj(t)

for
∫

ξi (t)ξj(t)dt = I (i = j)
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Exploratory Data Analysis

PCA and Karhunen-Loève

σ(s, t) =
∞∑

i=1

diξi (s)ξi (t)

The ξi (t) maximize Var
[∫

ξi (t)xj(t)dt
]
.

di = Var
[∫

ξi (t)xj(t)dt
]

di/
∑

di is proportion of variance explained

Principal component scores are

fij =

∫
ξj(t)[xi (t) − x̄(t)]dt

Reconstruction of xi (t):

xi (t) = x̄(t) +

∞∑

j=1

fijξj(t)
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Exploratory Data Analysis

functional Principal Components Analysis

fPCA of Medfly data

Scree Plot Components

Usual multivariate methods: choose # components based on
percent variance explained, screeplot, or information criterion.
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Exploratory Data Analysis

functional Principal Components Analysis
Interpretation often aided by plotting x̄(t) ± 2

√
diξi (t)

PC1 = overall fecundity
PC2 = beginning versus end
PC3 = middle versus ends
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Exploratory Data Analysis

Derivatives

Derivatives

Component 1

PCs

Component 2

Often useful to
examine a rate
of change.

Examine first
derivative of
medfly data.

Variation
divides into fast
or slow either
early or late.
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Exploratory Data Analysis

Derivatives and Principal Components

Note that the derivatives of Principal Components are not the same
as the Principal Components of Derivatives.

D[PCA(x)] PCA(D[x])
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The fda Package

The fda Package

54 / 181

The fda Package

fda Objects

The fda package provides utilities based on basis expansions and
smoothing penalties.

fda works by defining objects that can be manipulated with
pre-defined functions.

In particular

basis objects define basis systems that can be used

fd objects store functional data objects

bifd objects store functions of two-dimensions

Lfd objects define smoothing penalties

fdPar objects collect all three plus a smoothing parameter

Each of these are lists with prescribed elements.
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The fda Package

Basis Objects

Define basis systems of various types. They have elements

rangeval Range of values for which basis is defined.

nbasis Number of basis functions.

Specific basis systems require other arguments.

Basis objects created by create....basis functions. eg

fbasis = create.fourier.basis(c(0,365),21)

creates a fourier basis on [0 365] with 21 basis functions.
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The fda Package

Bspline Basis Objects

Bspline bases also require

norder Order of the splines.

breaks Knots (or break-points) for the splines.

nbasis = 17

norder = 6

months = cumsum(c(0,31,28,31,30,31,30,31,31,30,31,30,31))

bbasis = create.bspline.basis(c(0,365),nbasis,norder,months)

Creates a B-spline basis of order 6 on the year ([0 365]) with knots
at the months.

Note that

nbasis = length(knots)+norder-2

nbasis is fragile in case of conflict.
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The fda Package

Manipulating Basis Objects

Some functions that work with bases:

plot(bbasis)

plots bbasis.

eval.basis(0:365,fbasis)

evaluates fbasis at times 0:365.

inprod(bbasis,fbasis)

produces the inner product matrix Jij =
∫

φi (t)ψj(t)dt.

Additional arguments allow use of LΦ for linear differential
operators L.
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The fda Package

Functional Data (fd) Objects

Stores functional data: a list with elements

coefs array of coefficients

basis basis object

fdnames defines dimension names

fdobj = fd(coefs,bbasis)

creates a functional data object with coefficients coefs and basis
bbasis coefs has three dimensions corresponding to

1 index of the basis function

2 replicate

3 dimension
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The fda Package

Functional Arithmetic
fd objects can be manipulated arithmetically

fdobj1+fdobj2, fdobj1ˆk, fdobj1*fdobj2

are defined pointwise.

fd objects can also be subset

fdobj[3,2]

gives the 2nd dimension of the 3rd observation

Additionally

eval.fd(0:365,fdobj) returns an array of values of fdobj on
0:365.

deriv.fd(fdobj,nderiv) gives the nderiv-th derivative of
fdobj.

plot(fdobj) plots fdobj

eval.fd and plot can also take argument nderiv.
60 / 181



The fda Package

Lfd Objects
Define smoothing penalties

Lx = Dmx −
m−1∑

j=0

αj(t)D
jx

and require the αj to be given as a list of fd objects.

Two common shortcuts:

int2Lfd(k) creates an Lfd object Lx = Dkx

vec2Lfd(a) for vector a of length m creates an Lfd object
Lx = Dmx −

∑m
j=1

ajD
j−1x .

In particular

vec2Lfd(c(0,-2*pi/365,0))

creates a Harmonic acceleration penalty Lx = D3x + 2π
365

Dx .
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The fda Package

fdPar Objects

This is a utility for imposing smoothing. It collects

fdobj an fd (or a basis) object.

Lfdobj a Lfd object.

lambda a smoothing parameter.
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The fda Package

bifd Objects

Represents functions of two dimensions s and t as

x(s, t) =

K1∑

i=1

K2∑

j=1

φi (s)ψj(t)cij

requires

coefs for the matrix of cij .

sbasis basis object defining the φi (s).

tbasis basis object defining the ψj(t).

Can also be evaluated (but not plotted).

bifdPar objects store bifd plus Lfd objects and λ for each of s

and t.
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The fda Package

Smoothing Functions
Main smoothing function is smooth.basis

data(daily)

argvals = (1:365)-0.5

fdParobj = fdPar(fbasis,int2Lfd(2),1e-2)

tempSmooth =

smooth.basis(argvals,daily$tempav,fdParobj)

smooths the Canadian temperature data with a second derivative
penalty, λ = 0.01. Along with an fd object it returns

df equivalent degrees of freedom

SSE total sum of squared errors

gcv vector giving GCV for each smooth

Typically, λ is chosen to minimize average gcv.

Note: numerous other smoothing functions, Data2fd just returns the fd and

can avoid the fdPar object, data2fd is depricated.
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The fda Package

Functional Statistics
Basic utilities:

mean.fd mean fd object

var.fd Variance or covariance (bifd object)

cor.fd Correlation (given as a matrix)

sd.fd Standard deviation (root diagonal of var.fd)

In addition, fPCA obtained through

temppca=pca.fd(tempfd$fd,nharm=4,fdParobj)

(Smoothing not strictly necessary). pca.fd output:

harmonics fd objects giving eigen-functions

values eigen values

scores PCA scores

varprop Proportion of variance explained

Diagnostics plots given by plot(temppca)
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Functional Linear Models

Functional Linear Models
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Functional Linear Models

Statistical Models

So far we have focussed on exploratory data analysis

Smoothing

Functional covariance

Functional PCA

Now we wish to examine predictive relationships → generalization
of linear models.

yi = α +
∑

βjxij + εi
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Functional Linear Models

Functional Linear Regression

yi = α + xiβ + εi

Three different scenarios for yi xi

Functional covariate, scalar response

Scalar covariate, functional response

Functional covariate, functional response

We will deal with each in turn.
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Functional Linear Models: Scalar Response Models

Scalar Response Models
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Functional Linear Models: Scalar Response Models

Scalar Response Models

We observe yi , xi (t), and want to model dependence of y on x .

Option 1: choose t1, . . . , tk and set

yi = α +
∑

βjxi (tj) + εi

= α + xiβ + ε

But how many t1, . . . , tk and which ones?

See McKeague 2010, for this approach.
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Functional Linear Models: Scalar Response Models

In the Limit

If we let t1, . . . get increasingly dense

yi = α +
∑

βjxi (tj) + εi = α + xiβ + εi

becomes

yi = α +

∫
β(t)xi (t)dt + εi

General trick: functional data model = multivariate model with
sums replaced by integrals.

Already seen in fPCA scores x
T

ui →

∫
x(t)ξi (t)dt.
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Functional Linear Models: Scalar Response Models

Identification

Problem:

In linear regression, we must have fewer covariates than
observations.

If I have yi , xi (t), there are infinitely many covariates.

yi = α +

∫
β(t)xi (t)dt + εi

Estimate β by minimizing squared error:

β(t) = argmin
∑ (

yi − α −

∫
β(t)xi (t)dt

)2

But I can always make the εi = 0.
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Functional Linear Models: Scalar Response Models

Smoothing

Additional constraints: we want to insist that β(t) is smooth.

Add a smoothing penalty:

PENSSEλ(β) =
n∑

i=1

(
yi − α −

∫
β(t)xi (t)dt

)2

+ λ

∫
[Lβ(t)]2 dt

Very much like smoothing (can be made mathematically precise).

Still need to represent β(t) – use a basis expansion:

β(t) =
∑

ciφi (t).
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Functional Linear Models: Scalar Response Models

Calculation

yi = α +

∫
β(t)xi (t)dt + εi = α +

[∫
Φ(t)xi (t)dt

]
c + εi

= α + xic + εi

for xi =
∫

Φ(t)xi (t)dt. With Zi = [1xi ],

y = Z

[
α
c

]
+ ε

and with smoothing penalty matrix RL:

[α̂ ĉT ]T =
(
ZTZ + λRL

)−1

ZTy

Then

ŷ =

∫
β̂(t)xi (t)dt = Z

[
α̂
ĉ

]
= Sλy
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Functional Linear Models: Scalar Response Models

Choosing Smoothing Parameters
Cross-Validation:

OCV(λ) =
∑ (

yi − ŷi

1− Sii

)2

λ = e−1 λ = e20

λ = e12 CV Error
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Functional Linear Models: Scalar Response Models

Confidence Intervals
Assuming independent

εi ∼ N(0, σ2

e )

We have that

Var

[
α̂
ĉ

]
=

[(
ZTZ + λR

)−1

ZT

] [
σ2

e I
] [

Z
(
ZTZ + λR

)−1
]

Estimate

σ̂2

e = SSE/(n − df ), df = trace(Sλ)

And (pointwise) confidence intervals for β(t) are

Φ(t)ĉ ± 2
√

Φ(t)TVar[ĉ]Φ(t)
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Functional Linear Models: Scalar Response Models

Confidence Intervals

R2 = 0.987 σ2 = 349, df = 5.04

Extension to multiple functional covariates follows same lines:

yi = β0 +

p∑

j=1

∫
βj(t)xij(t)dt + εi
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Functional Linear Models: functional Principal Components Regression

functional Principal
Components Regression
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Functional Linear Models: functional Principal Components Regression

functional Principal Components Regression

Alternative: principal components regression.

xi (t) =
∑

dijξj(t) dij =

∫
xi (t)ξj(t)dt

Consider the model:

yi = β0 +
∑

βjdij + εi

Reduces to a standard linear regression problem.

Avoids the need for cross-validation (assuming number of PCs
is fixed).

By far the most theoretically studied method.
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Functional Linear Models: functional Principal Components Regression

fPCA and Functional Regression Interpretation

yi = β0 +
∑

βjdij + εi

Recall that dij =
∫

xi (t)ξj(t)dt so

yi = β0 +
∑ ∫

βjξj(t)xi (t)dt + εi

and we can interpret

β(t) =
∑

βjξj(t)

and write

yi = β0 +

∫
β(t)xi (t)dt + εi

Confidence intervals derive from variance of the dij .
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Functional Linear Models: functional Principal Components Regression

A Comparison
Medfly Data: fPCA on 4 components (R2 = 0.988) vs Penalized
Smooth (R2 = 0.987)
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Functional Linear Models: functional Principal Components Regression

Two Fundamental Approaches

(Almost) all methods reduce to one of

1 Perform fPCA and use PC scores in a multivariate method.

2 Turn sums into integrals and add a smoothing penalty.

Applied in functional versions of

generalized linear models

generalized additive models

survival analysis

mixture regression

...

Both methods also apply to functional response models.
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Functional Linear Models: Functional Response Models

Functional Response Models
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Functional Linear Models: Functional Response Models

Functional Response Models

Case 1: Scalar Covariates: (yi (t), xi ), most general linear model is

yi (t) = β0(t) +

p∑

j=1

βi (t)xij .

Conduct a linear regression at each time t (also works for ANOVA
effects).

But we might like to smooth; penalize integrated squared error

PENSISE =
n∑

i=1

∫
(yi (t) − ŷi (t))

2 dt +

p∑

j=0

λj

∫
[Ljβj(t)]

2 dt

Usually keep λj , Lj all the same.
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Functional Linear Models: Functional Response Models

Concurrent Linear Model

Extension of scalar covariate model: response only depends on x(t)
at the current time

yi (t) = β0(t) + β1(t)xi (t) + εi (t)

yi (t), xi (t) must be measured on same time domain.

Must be appropriate to compare observations time-point by
time-point (see registration section).

Especially useful if yi (t) is a derivative of xi (t) (see dynamics
section).
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Functional Linear Models: Functional Response Models

Confidence Intervals

We assume that
Var(εi ) = σ(s, t)

then
Cov(β(t), β(s)) = (XTX )−1σ(s, t).

Estimate σ(s, t) from ei (t) = yi (t) − ŷi (t).

Pointwise confidence intervals ignore covariance; just use

Var(β(t)) = (XTX )−1σ(t, t).

Effect of smoothing penalties (both for yi and βj) can be
incorporated.
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Functional Linear Models: Functional Response Models

Gait Data

Gait data - records of the angle of hip and knee of 39 subjects
taking a step.

Interest in kinetics of walking.

87 / 181

Functional Linear Models: Functional Response Models

Gait Model

knee(t) = β0(t) + β1(t)hip(t) + ε(t)

β0(t) indicates a
well-defined autonomous
knee cycle.

β1(t) modulation of cycle
with respect to hip

More hip bend also
indicates more knee bend;
by a fairly constant amount
throughout cycle.
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Functional Linear Models: Functional Response Models

Gait Residuals: Covariance and Diagnostics

Residuals Residual Correlation

Examine residual functions for outliers, skewness etc (can be
challenging).

Residual correlation may be of independent interest.
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Functional Linear Models: Functional Response Models

Functional Response, Functional Covariate

General case: yi (t), xi (s) - a functional linear regression at each
time t:

yi (t) = β0(t) +

∫
β1(s, t)xi (s)ds + εi (t)

Same identification issues as scalar response models.

Usually penalize β1 in each direction separately

λs

∫
[Lsβ1(s, t)]

2 dsdt + λt

∫
[Ltβ1(s, t)]

2 dsdt

Confidence Intervals etc. follow from same principles.
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Functional Linear Models: Functional Response Models

Summary

Three models

Scalar Response Models Functional covariate implies a
functional parameter.
Use smoothness of β1(t) to obtain identifiability.
Variance estimates come from sandwich
estimators.

Concurrent Linear Model yi (t) only depends on xi (t) at the
current time.
Scalar covariates = constant functions.
Will be used in dynamics.

Functional Covariate/Functional Response Most general
functional linear model.
See special topics for more + examples.
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Functional Linear Models in R

Functional Linear Models in R
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Functional Linear Models in R

fRegress

Main function for scalar responses and concurrent model, requires

y response, either vector or fd object.

xlist list containing covariates; vectors or fd objects.

betalist list of fdPar objects to define bases and smoothing
penalties for each coefficient

Note: scalar covariates have constant coefficient
functions, use a constant basis.

Returns depend on y; always

betaestlist list of fdPar objects with estimated β coefficients

yhatfdobj predicted values, either numeric or fd.

93 / 181

Functional Linear Models in R

fRegress.stderr

Produces pointwise standard errors for the β̂j .

model output of fRegress

y2cmap smoothing matrix for the response (obtained from
smooth.basis)

SigmaE Error covariance for the response.

Produces a list including betastderrlist, which contains fd
objects giving the pointwise standard errors.
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Functional Linear Models in R

Other Utilities
fRegress.CV provides leave-one-out cross validation

Same arguments as fRegress, allows use of specific
observations.

For concurrent linear models, we cross-validate by

CV(λ) =

n∑

i=1

∫ (
yi (t) − ŷ−i

λ (t)
)2

dt

ŷ−i
λ (t) = prediction with smoothing parameter λ and without

ith observation

Redundant (and slow) for scalar response models – use OCV in
output of fRegress instead.

plotbeta(betaestlist,betastderrlist) produces graphs with
confidence regions.

95 / 181

Registration

Registration
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Registration

Berkeley Growth Data

Heights of 20 girls taken from ages 0 through 18.

Growth process easier to visualize in terms of acceleration.

Peaks in acceleration = start of growth spurts.
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Registration

The Registration Problem
Most analyzes only account for variation in amplitude.

Frequently, observed data exhibit features that vary in time.

Berkeley Growth Acceleration
Observed Aligned

Mean of unregistered curves has smaller peaks than any
individual curve.
Aligning the curves reduces variation by 25% 98 / 181

Registration

Defining a Warping Function

Requires a transformation of time.

Seek

si = wi (t)

so that

x̃i (t) = xi (si )

are well aligned.

wi (t) are time-warping (also called registration) functions.

99 / 181

Registration

Landmark registration

For each curve xi (t) we choose points

ti1, . . . , tiK

We need a reference (usually one of the curves)

t01, . . . , t0K

so these define constraints

wi (tij) = t0j

Now we define a smooth function to go between these.
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Registration

Identifying Landmarks

Major landmarks of interest:

where xi (t) crosses some
value

location of peaks or valleys

location of inflections

Almost all are points at which some derivative of xi (t) crosses zero.

In practise, zero-crossings can be found automatically, but usually
still require manual checking.
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Registration

Results of Warping

Registered Acceleration Warping Functions
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Registration

Interpretation

Warping Functions Result

Warping function below diagonal pushes registered function later in
time.
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Registration

Constraints on Warping Functions

Let t ∈ [0 T ], the wi (t) should follow a number of constraints:

Initial conditions

wi (0) = 0, wi (T ) = T

landmarks

wi (tij) = t0j

Monotonicity: if t1 < t2,

wi (t1) < wi (t2)
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Registration

Enforcing Constraints

Starting from the basis expansion

Wi (t) = Φ(t)ci

we can transform Wi (t) to enforce the following constraints:

Positive
Ei (t) = exp(Wi (t))

Monotonic

Ii (t) =

∫ t

0

exp(Wi (s))ds

Normalized

wi (t) = T
Ii (t)

Ii (T )
= T

∫ t

0
exp(Wi (s))ds

∫ T

0
exp(Wi (s))ds

The last of these defines a warping function.
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Registration

Computing Landmark Registration

Requires an estimate of

t0k =

∫ tik

0

exp(Φ(s)ci )ds

obtained from non-linear least squares.

Convex optimization problem, but can be problematic.

Directly estimating ci to satisfy

t0k = Φ(tik)ci

frequently retains monotonicity: easier, but should be checked.
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Registration

From W (t) to w(t)

W (t) w(t)

W (0) = 0 to obtain identifiability under normalization.
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Registration

Interpreting Registration with Monotone Smoothing

Recall that for monotone smoothing we have

wi (t) = T

∫ t

0

eWi (s)ds/

∫ T

0

eWi (s)ds

Notes:

t > wi (t) = events in xi (t) are running early

Wi (t) > log(T/
∫ T

0
eWi (s)ds) ⇒ slope of wi (t) > 1

Wi (t) < log(T/
∫ T

0
eWi (s)ds) corresponds “natural time”

speeding up relative to template curve.
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Registration

Automatic Methods

Landmark registration requires

clearly identifiable landmarks

manual care in defining and finding landmarks

can we come up with something more general?

Obvious criterion is between-curve sum of squares for each curve

BCSSE[wi ] =

∫
(x0(t) − xi (wi (t)))

2 dt

Requires a reference x0(t), works well for simple wi (eg linear
transformations).
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Registration

Why Squared Error Doesn’t Work for Flexible Methods
Amplitude-only variation is not ignored.

Before After
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Registration

Alternatives

Major issue: we do not want to account for effects that are due
solely to amplitude variation.

Instead want a measure of linearity between xi (wi (t)) and x0(t).

For univariate xi (t), this is just correlation between curves.

For multivariate xi (t), minimize smallest eigenvalue of
correlation matrix.

Many other methods have been proposed.
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Registration

Collinearity Before and After Registration
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Registration

Comparison Of Registration Results

First 10 subjects:

Landmark Automatic

Note: minimum-eigenvalue condition can have local minima and
yield poor results.
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Registration

Summary

Registration – important tool for analyzing non-amplitude
variation.

Easiest: landmark registration, requires manual supervision.

Continuous registration: numerically difficult alternative.

Usually a preprocessing step; unaccounted for in inference.

Warning: interaction with derivatives

D [x (w(t))] = D[w ](t)D[x ] [w(t)]

Registration and D do not commute; this can affect dynamics.

R functions: landmarkreg and register.fd.
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Dynamics

Dynamics
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Dynamics

Relationships Between Derivatives

Access to derivatives of functional data allows new models.

Variant on the concurrent linear model: e.g.

Dyi (t) = β0(t) + β1(t)yi (t) + β2(t)xi (t) + εi (t)

Higher order derivatives could also be used.

Can be estimated like concurrent linear model.

But how do we understand these systems?

Focus: physical analogies and behavior of first and second order
systems.
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Dynamics: First Order Systems

First Order Systems
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Dynamics: First Order Systems

Oil-Refinery Data

Measurement of level of oil in a refinery bucket and reflux flow out
of bucket.

Clearly, level responds to
outflow.

No linear model will
capture this relationship.

But, there is clearly
something with fairly simple
structure going on.
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Dynamics: First Order Systems

Relationships Among Derivatives

Initial period flat – no
relationship.

Following: negative
relationship between Dx

and x .

Suggests

Dx(t) = −βx(t) + αu(t)

for input u(t) (reflux flow).
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Dynamics: First Order Systems

Mechanistic Models for Rates

Imagine a bucket with a hole in the bottom.

Left to itself, the water will
flow out the hole and the
level will drop

Adding water will increase
the level in the bucket

We want to describe the
rate at which this happens
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Dynamics: First Order Systems

Thinking About Models for Rates

Water in a leaky bucket.

To make things simple, assume the bucket has straight sides. Let
x(t) be the current volume of liquid in the bucket.

Firstly, we need a rate for outflow without input (u(t) = 0).

The rate at which water leaves the bucket is proportional to
how much pressure it is under.

Dx(t) = −Cp(t)

The pressure will be proportional to the weight of liquid. This
in turn is proportional to volume: p(t) = Kx(t). So

Dx(t) = −βx(t)
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Dynamics: First Order Systems

Solution to First Order ODE

When the tap is turned on:

Dx(t) = −βx(t) + αu(t)

Solutions to this equation are of the form

x(t) = Ce−βt + α

∫ t

0

e−(t−s)βu(s)ds

This formula is not particularly enlightening; we would like to
investigate how x(t) behaves.
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Dynamics: First Order Systems

Characterizing Solutions to Step-Function Inputs

In engineering, it is common to study the reaction of x(t) when
u(t) is abruptly stepped up or down.

Let’s start from x(0) = 0 u(0) = 0 and step u(t) to 1 at time t

x(t) =

{
0 0 ≤ t ≤ 1

(α/β)
[
1 − e−β(t−1)

]
t > 1

when u is increased, x tends to α/β.

Trend is exponential – gets to 98% of α/β in about 4/β time
units.
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Dynamics: First Order Systems

Fit to Oil Refinery Data
Set α = −0.19, β = 0.02
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Dynamics: First Order Systems

Nonconstant Coefficients

For the inhomogeneous system

Dx(t) = −β(t)x(t) + α(t)u(t)

solution is

x(t) = Ce
∫

t

0 −β(s)ds + e−
∫

t

0 β(s)ds

∫ t

0

α(s)u(s)e
∫

s

0 β(v)dvds

When α(t) and β(t) change slower x(t) easiest to think of
instantaneous behavior.

x(t) is tending towards α(t)/β(t) at an exponential rate
e−β(t).
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Dynamics: Second Order Systems

Second Order Systems
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Dynamics: Second Order Systems

Second Order Systems

Physical processes often measured in terms of acceleration

We can imagine a weight at the
end of a spring. For simple
mechanics

D2x(t) = f (t)/m

here the force, f (t), is a sum of
components

1 −β0(t)x(t): the force pulling the spring back to rest position.

2 −β1(t)Dx(t): forces due to friction in the system

3 α(t)u(t): external forces driving the system

Springs make good initial models for physiological processes, too.
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Dynamics: Second Order Systems

Lip Data
Measured position of lower lip saying the word “Bob”.

20 repetitions.

initial rapid opening

sharp transition to nearly
linear motion

rapid closure.

Approximate second-order model – think of lip as acting like a
spring.

D2x(t) = −β1(t)Dx(t) − β0(t)x(t) + ε(t)
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Dynamics: Second Order Systems

Looking at Derivatives
Clear relationship of D2x to Dx and x .
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Dynamics: Second Order Systems

The Discriminant Function

D2x(t) = −β1(t)Dx(t) − β0(t)x(t)

Constant co-efficient solutions are of the form:

x(t) = C1e

[

−
β1
2

+
√

d
]

t
+ C2e

[

−
β1
2
−
√

d
]

t

with the discriminant being

d =

(
β1

2

)2

− β0

If d < 0, e it = sin(t); system oscillates with growing or
shrinking cycles according to the sign of β1.

If d > 0 the system is over-damped

If β1 < 0 or β0 > 0 the system exhibits exponential growth.
If β1 > 0 and β0 < 0 the system decays exponentially.
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Dynamics: Second Order Systems

Graphically
This means we can partition (β0, β1) space into regions of different
qualitative dynamics.

This is known as a bifurcation diagram.

Time-varying dynamics. Like constant-coefficient dynamics at each
time, if β1(t), β0(t) evolve more slowly than x(t).
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Dynamics: Second Order Systems

Estimates From a Model

Estimated Coefficients Discriminant

initial impulse

middle period of damped behavior (vowel)

around periods of undamped behavior with period around
30-40 ms.
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Dynamics: Second Order Systems

On a Bifurcation Diagram

Plot (−β1(t),−β0(t)) from pda.fd and add the discriminant
boundary.
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Dynamics: Second Order Systems

Principle Differential Analysis
Translate autonomous dynamic model into linear differential
operator:

Lx = D2x + β1(t)Dx(t) + β0(t)x(t) = 0

Potential use in improving smooths (theory under development).

We can ask what is smooth? How does the data deviate from
smoothness?

Solutions of Lx(t) = 0 Observed Lx(t)
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Dynamics: Second Order Systems

Summary

FDA provides access to models of rates of change.

Dynamics = models of relationships among derivatives.

Interpretation of dynamics relies on physical
intuition/analogies.

First order systems – derivative responds to input; most often
control systems.
Second order systems – Newton’s laws; springs and pendulums.
Higher-dimensional models also feasible (see special topics).

Many problems remain:

Relationship to SDE models.
Appropriate measures of confidence.
Which orders of derivative to model.
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Future Problems

Future Problems
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Future Problems

Correlated Functional Data

Most models so far assume the xi (t) to be independent.

But, increasing situations where a set of functions has its own
order

Time series of functions.
Spatially correlated functions.

We need new models and methods to deal with these
processes.
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Future Problems

Time Series of Functions

A functional AR(1) process

yi+1(t) = β0(t) +

∫
β1(s, t)yi (s)dt + εi (t)

can be fit with a functional linear model.

Additional covariates can be incorporated, too.

What about ARMA process etc?

yi (t) = β0(t)+

p∑

j=1

∫
βj(s, t)yi−j(s)dt+

q∑

k=1

∫
γj(s, t)εi−k(s)ds

Are these always the best way of modeling functional time
series? How do we estimate them?
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Future Problems

Example: Particulate Matter Distributions
Project in Civil and Environmental Engineering at Cornell University

Records distribution of particle sizes in car exhaust.
36 size bins, measured every second.
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Future Problems

Particulate Matter Models
First step: take an fPCA and use multivariate time series of PC
scores.

Legitimate when stationary, but in presence of covariates?
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Future Problems

Particulate Matter Models

Possible AR models (s used for “size”):

yi+1(s) = α(s) + γ(s)zi +

∫
β1(u, s)yi (u)du + εi (s)

zi = engine speed and other covariates

High-frequency data: should we consider smooth change over time?

Dty(t, s) = α(t) + γ(s)z(t) +

∫
β1(u, s)yi (t, u)du + εi (s)

Dynamic model: how do we fit? How do we distinguish from
discrete time?
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Future Problems

Spatial Correlation
Example: Boston University Geosciences

xij(t) gives 8-day NDVI (“greenness”) values at adjacent
500-yard patches on a square.
Interest in year-to-year variation, but also spatial correlation.

Data xij(t) Var(xij(t)) Cov(xij(t), xi(j+1)(t))
Temporal Covariance in 2006

time(8 days)
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m

e
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y
s
)
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N-S Temporal Covariance 2006
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m

e
(8
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a

y
s
)
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0
1
0

2
0

3
0

4
0

Required: models and methods for correlation at different spatial
scales.
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Future Problems

Tests and Bootstrap
How do we test for significance of a model? Eg

yi (t) = β0 + β1(t)xi (t) + εi (t)

Existing method: permutation tests (Fperm.fd)

Permutation test for Gait model 1 Pair response with
randomly permuted
covariate and estimate
model.

2 Calculate F statistic at
each point t.

3 Compare observed F (t)
statistic to permuted F .

4 Test based on max F (t).
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Future Problems

Tests and Bootstrap

Formalizing statistical properties of tests

Some theoretical results on asymptotic normality of test
statistics.

Still requires bootstrap/permutation procedures to evaluate.

Consistency of bootstrap for functional models unknown.

Many possible models/methods to be considered.
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Future Problems

Model Selection

Usual problem: which covariates to use?

Tests (see previous slide)
Functional information criteria.

Also: which parts of a functional covariate to use?
See James and Zhu (2007)

Not touched: which derivative to model?

Similarly, which derivative to register?
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Future Problems

Functional Random Effects

Avoiding functional random effects a unifying theme.

But, much of FDA can be written in terms of functional
random effects.

Eg 1: Smoothing and Functional Statistics

yij = xi (tij) + εij

xi (t) ∼ (µ(t), σ(s, t))

Kauermann & Wegener (2010) assume the xi (t) have a Gaussian
Process distribution.

Estimate µ(t), σ(s, t) with MLE + smoothing penalty.
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Future Problems

Functional Random Effects
Eg 2: Registration re-characterized as

yi (t) = xi (wi (t))

xi (t) ∼ (µ(t), σ(s, t))

log Dwi (t) ∼ (0, τ(s, t))

use log Dwi (t) so that wi is monotone

Calculation: highly nonlinear; MCMC?

Some work done on restricted models.

Growth data: replace first line with acceleration?

D2yi (t) = xi (wi (t))

Model selection question!
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Future Problems

Functional Random Effects
Eg 3: Accounting for Smoothing with functional covariate

yi = β0 +

∫
β1(t)xi (t)dt + εi

zij = xi (tij) + ηij

xi (t) ∼ (µ(t), σ(s, t))

More elaborate models feasible

Include observation process in registration.

Linear models involving registration functions:

fi = β0 +

∫
β1(t)wi (t)dt + ζi

Needs numerical machinery for estimation.
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Future Problems

Conclusions

FDA seeing increasing popularity in application and theory.

Much basic definitional work already carried out.

Many problems remain open in

Theoretical properties of testing methods.
Representations of dependence between functional data.
Random effects in functional data.

Functional data and dynamics.

Still lots of room to have some fun.
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Future Problems

Thank You

Acknowledgements to: Jim Ramsay, Spencer Graves, Hans-Georg
Müller, Oliver Gao, Darrel Sonntag, Maria Asencio, Surajit Ray,
Mark Friedl, Cecilia Earls, Chong Liu, Matthew McLean, Andrew
Talal, Marija Zeremkova; and many others.
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Special Topics

Special Topics
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Special Topics: Smoothing and fPCA

Smoothing and fPCA
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Special Topics: Smoothing and fPCA

Smoothing and fPCA
When observed functions are rough, we may want the PCA to be
smooth

reduces high-frequency variation in the xi (t)

provides better reconstruction of future xi (t)

We therefore want to find a way to impose smoothness on the
principal components.

PCA of 2nd derivative of medfly data:
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Special Topics: Smoothing and fPCA

Penalized PCA

Standard penalization = add a smoothing penalty to fitting criteria.

eg

Var

(∫
ξ1(t)xi (t)dt

)
+ λ

∫
[Lξ1(t)]

2 dt

For PCA, fitting is done sequentially – choice of smoothing for first
component affects second component.

Instead, we would like a single penalty to apply to all PCs at once.
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Penalized PCA

For identifiability, we usually normalize PCs:

ξ1(t) = argmaxVar

{[∫
xi (t)ξ(t)dt

]
/‖ξ(t)‖2

2

}

To penalize, we include a derivative in the norm:

‖ξ(t)‖2

L =

∫
ξ(t)2dt + λ

∫
[Lξ(t)]2 dt

Search for the ξ that maximizes

Var
[∫

ξ(t)xi (t)dt
]

∫
ξ(t)2dt + λ

∫
[Lξ(t)]2 dt

Large λ focusses on reducing Lξ(t) instead of maximizing variance.
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Choice of λ

Equivalent to leave-one-out cross validation: try to reconstruct xi

from first k PCs

Estimate ξ̂−i
λ1

, . . . , ξ̂−i
λk

without ith observation.

Attempt a reconstruction

x̃iλ(t) = argmin
c

∫ 

x(t) −
k∑

j=1

cj ξ̂
−i
λj (t)




2

dt

Measure

CV(λ) =
n∑

i=1

∫
(xi (t) − x̃iλ(t))2 dt
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Special Topics: FDA and Sparse Data

FDA and Sparse Data
Consider the use of smoothing for data with

yij = xi (tij) + εi

with

tij sparse, unevenly distributed between records

Assumed common mean and variance of the xi (t)
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HCV Data
Measurements of chemokines (immune response) up to and post
infection with Hepititis C in 10 subjects.

Sparse, noisy, high-dimensional. Aim is to understand dynamics. 158 / 181

Special Topics: FDA and Sparse Data

Smoothed Moment-Based Variance Estimates

(Based on Yao, Müller, Wang, 2005, JASA)

When data are sparse for each curve, smoothing may be poor.

But, we may over-all, have enough to estimate a covariance.

1 Estimate a smooth m̂(t) from all the data pooled together

2 For observation times tij , tik , j 6= k of curve i compute

one-point covariance estimate

Zijk = (Yij − m̂(tij)) (Yik − m̂(tik))

3 Now smooth the data (tij , tik ,Zijk) to obtain σ̂(s, t).

PCA of σ̂(s, t) can be used to reconstruct trajectories, or in
functional linear regression.
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Smoothed Moment-Based Variance Estimates

Mean Smooth

fPCA

Design

Reconstruction

Smoothed
Covariance

Not all subjects
plotted in design.
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Special Topics: Exploratory Analysis of Handwriting Data

Exploratory Analysis of
Handwriting Data
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Covariance and Correlation

Correlation often brings out sharper timing features.

Handwriting y -direction:

Covariance Correlation
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Correlation

A closer look at the handwriting data

Covariance Correlation

Clear timing points are associated with loops in letters.
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Cross Covariance

σxy (s, t) =
1

n

∑
(xi (s) − x̄(s))(yi (t) − ȳ(t))
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Cross Covariance
For fPCA, the distribution includes variance within and between
dimensions
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Special Topics: Exploratory Analysis of Handwriting Data

Principal Components Analysis

Obtain the joint fPCA for both directions.

PC1 PC2

PC1 = diagonal spread, PC2 = horizontal spread
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Principal Differential Analysis
Second order model:

D2x(t) = β2(t)Dx(t) + β1(t)x(t) + ε(t)

Coefficients largely uninterpretable (may be of interest elsewhere)

Coefficient Functions Eigenvalues

Stability analysis ⇒ almost entirely cyclic; one cycle at 1/3 second,
another modulates it.
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Functional Response, Functional
Covariate Models
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Functional Response, Functional Covariate

General case: yi (t), xi (s) not necessarily on the same domain.
Multivariate model

Y = B0 + XB + E

Generalizes to

yi (t) = β0(t) +

∫
β1(s, t)xi (s)ds + εi (t)

Fitting criterion is Sum of Integrated Squared Errors

SISE =
∑ ∫

(yi (t) − ŷi (t))
2 dt

Same identification issues as scalar response models.
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Identification of Functional Response Model

Need to add on a smoothing penalty for identification.

Usually penalize β1 in each direction separately

J[β1, λs , λt ] = λs

∫
[Lsβ1(s, t)]

2 dsdt +λt

∫
[Ltβ1(s, t)]

2 dsdt

Now minimize

PENSISE =
∑ ∫

(yi (t) − ŷi (t))
2 dt + J[β1, λs , λt ]

Confidence Intervals etc follow from usual principles.

Choice of λ’s from leave-one-curve-out cross validation.
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Swedish Mortality Data

log hazard rates calculated from tables of mortality at ages 0
through 80 for Swedish women.

Data available for birth years 1757 through 1900.

Interest in looking at mortality trends.

Clear over-all reduction in mortality; but effects common to
adjacent cohorts?
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Swedish Mortality Data

Fit a functional auto-regressive model:

yi+1(t) = β0(t) +

∫
β1(s, t)yi (s)ds + εi (t)

β0 β1(s, t)
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Swedish Mortality Data
Central ridge in β1(s, t) one year off diagonal:

∫
β1(s, t)yi (s)ds ≈ yi (t + 1)

what affects one cohort, affects the next when one year younger!

β1(s, t) Original Data

1918 flu pandemic obvious as diagonal band.
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linmod

Produces complete functional covariate/functional response model
for a single covariate.

yfdobj fd object for response

xfdobj fd object for covariate

betaList smoothing and basis definitions for parameters

1 fdPar object for β0

2 bifdPar object for β1

Returns beta0estfd, beta1estbifd and yhatfdobj.

Full plotting/standard error features not yet implemented.
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Special Topics: Multidimensional Principal Differential Analysis

Multidimensional Principal
Differential Analysis

175 / 181

Special Topics: Multidimensional Principal Differential Analysis

Higher-Order and Multidimensional Systems

For dynamic analysis, second order system

D2x(t) = β1(t)Dx(t) + β0(t)x(t)

reduces to multidimensional system

(
Dy(t)
Dx(t)

)
=

(
β1(t) β0(t)

1 0

) (
y(t)
x(t)

)

with y(t) = Dx(t).

Can be carried on to higher-order multidimensional systems.

Still fit with original concurrent linear model (Query: is this a good
idea?)

But we need to know how to analyze multidimensional systems.
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Higher-Order and Multidimensional Systems
Analysis of multidimensional systems

Dx(t) = Ax(t)

has solutions of the form

xj(t) =
∑

cije
di t

for di the eigenvalues of A.

di = dRe
i + id Im

i can be complex. Recall

edi t = edRe

i
t sin(d Im

i t)

Interpretation:

Positive real parts = exponential growth

Negative real parts = exponential decay

Imaginary parts = cyclic with period 2π/d Im
i .

Can interpret instantaneous qualitative behavior.
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2nd Order Analysis of Gait Data

2nd order system to approximate cyclic motion (eg of a pendulum)

We now have a two-dimensional system

x corresponds to Hip

y corresponds to Knee

D2x(t) = −βx1(t)Dx(t) − βx0(t)x(t) + αx0(t)y(t) + αx1(t)Dy(t)

D2y(t) = −βy1(t)Dy(t) − βy0(t)y(t) + αy0(t)x(t) + αy1(t)Dx(t)

which we fit by the squared discrepancy from equality.
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Estimates of Coefficient Functions

Blue = influence on D2 Hip, Red = influence on D2Knee.

Surprise = strong effect of knee angle on hip.
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Examining Stability

Recall that the stability of the system depends on the eigenvalues of




D2x(t)
D2y(t)
Dx(t)
Dy(t)


 =




−βx1(t) αx1(t) −βx0(t) αx0(t)
αy1(t) −βy1(t) αy0(t) −βy0(t)

1 0 0 0

0 1 0 0







Dx(t)
Dy(t)
x(t)
y(t)




Negative signs because we are measuring the β(t) relative to the
Lfd instead of the differential equation.

Now we can take the eigen-decomposition at each point.
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Stability Analysis

Two magnitudes of
imaginary parts – two
stable cycle periods at 0.8
and 1.5 cycles.

Mostly dissipative (negative
real parts) except

Time 0.5 = push off

Time 0.8 = bend in knee.

Considerably more detailed
analysis possible.
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