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Abstract

This report provides proofs of some theorems appearing in [Ramsay et. al. 2007]
and also provides some of the calculations necessary to carry out the de-
scribed procedure.

1 Introduction

[Ramsay et. al. 2007] details a method of estimating parameters for ordinary
differential equations using smoothing spline technology. ODEs represent pro-
cesses that transforms a set of m input functions u(t) into a set of d output
functions x(t). Dynamic systems model output change directly by linking the
output derivatives ẋ(t) to x(t) itself, as well as to inputs u.

ẋ(t) = f(x,u, t|θ), t ∈ [0, T ]. (1)

Vector θ contains any parameters defining the system whose values are not
known from experimental data, theoretical considerations or other sources of in-
formation. The task is then to estimate θ from noisily observed data. In general,
we assume that only some subset of the components of x have been measured
and we denote the set of indices of these by I with associated measurements yi

taken at times ti.
Unfortunately, explicit solutions to (1) are rarely available and must be ap-

proximated numerically. Moreover, the fitting surfaces tend to be very rough
and direct optimization methods tend to frequently find local minima. [Ramsay et. al. 2007]
attempts to ameliorate both these problems.

The approach in [Ramsay et. al. 2007] belongs in the family of collocation
methods that express the approximation x̂i of xi in terms a basis function
expansion

x̂i(t) =
Ki∑
k

cikφik(t) = c′iφi(t), (2)

where the number Ki of basis functions in vector φi is chosen so as to ensure
enough flexibility to capture the variation in the approximated function xi and
its derivatives.
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The task is now the joint estimation of c and θ. This is done in a two-stage
process, in the inner optimization, the c are chosen by minimizing the criterion

J(c|θ,σ,λ) = −
∑
i∈I

ln g(yi|ci,σi) + P (x̂|θ,λ), (3)

where gi represents the likelihood for the observation yi given x̂i(ti) = c′iφi(ti)
and σi are (known) parameters defining gi. We take a nonlinear penalty

P (x̂|θ,λ) =
d∑

i=1

λi

∫ (
d

dt
xi(t)− fi(x|θ,u)

)2

dt (4)

which explicitly controls the extent to which x may deviate from a solution to
(1). This gives c(θ) as a function of θ which is then chosen to minimize:

H(θ,σ|λ) = −
∑
i∈I

ln g(yi|ci(θ),σi) (5)

this is called the outer optimization. In practise, it is common to assume an
uncorrelated error structure for the yi, leading to the error sum of squares
criterion

gi(yi|x̂i,σi) = −wi‖yi − x̂i(ti)‖2. (6)

For the purposes of this report, we will take λi = λ to be constant so that
we can write

J(c|θ,σ,λ) = l(x) + λP (x|θ)

with

H(θ,σ|λ) = l(x)

for some l dependent on the data and σ. This report examines the behavior of
our estimate of θ as λ is allowed to increase.

2 Theorems and Proofs

This theorem states and proves theorems appearing in [Ramsay et. al. 2007].
The essential import of these is that as λ increases, the parameter estimates we
get tend to those that would have been gotten by optimizing exact solutions to
(1).

We will assume that solutions to the inner optimization problem exist and are
well defined, and therefore that there are objects x that satisfy P (x|θ) = 0. This
is guaranteed locally by the following theorem adapted from [Bellman, 1953]:
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Theorem 2.1. Let f be Lipschitz continuous and u differentiable almost every-
where, then the initial value problem:

ẋ(t) = f(x,u, t|θ), x(t0) = x0

has a unique solution.

2.1 Preliminaries

The following theorem is a well-known consequence of the method of Lagrange
multipliers:

Theorem 2.2. Suppose that xλ minimizes F (x) + λP (x), then xλ minimizes
F (z) for z ∈ {x : P (x) < P (xλ)}. Moreover, for λ′ > λ, P (xλ′) ≤ P (xλ).

Two corollaries:

Corollary 2.1. For λ′ > λ, F (xλ′) ≥ F (xλ).

Corollary 2.2. If ∃x such that P (x) = 0, then P (xλ) → 0 as λ →∞.

follow immediately.
The proofs of Theorems 2.4 and 2.5 rely heavily on the following:

Theorem 2.3. Let X and Y be metric spaces with X closed and bounded. Let
g(x, α) : X × Y → R be uniformly continuous in x and α, such that

x(α) = argmin
x∈X

g(x, α)

is well defined for each α. Then x(α) : Y → X is continuous.

We begin with two lemmas:

Lemma 2.1. Let X be a closed and bounded metric space. Suppose that

x∗ = argmin
x∈X

g(x) (7)

is well defined and g(x) is continuous. Then

∀ε > 0, ∃δ > 0 such that ‖x− x∗‖ > ε ⇒ f(x)− f(x∗) > δ.

holds for all x ∈ X .

Proof. Assume that the the statement is not true. That is, for some ε > 0 we
can find a sequence xn ∈ X such that ‖xn−x∗‖ > ε but ‖g(xn)−g(x∗)‖ < 1/n.
Since X is closed and bounded, it is compact and there exists a subsequence
xn′ → x∗∗ 6= x∗ for some x∗∗. By the continuity of g, we have g(x∗∗) = g(x∗)
violating the assumption that (7) is well defined.
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Lemma 2.2. Let X and Y be metric spaces and g(x, α) : X×Y → R be bounded
below and uniformly continuous in α and x, then j(α) = minx∈X g(x, α) is a
continuous function.

Proof. Assume j(α) is not continuous: that is, for some α ∈ Y, ∃ε > 0 such
that ∀δ > 0, ∃α′ with |α′ − α| < δ and |j(α)− j(α′)| > ε.

By the uniformity of g in α across x, we can choose δ′ > 0 so that |g(x, α)−
g(x, α′)| < ε/3 for all x when |α − α′| < δ′. By assumption, we can find some
such α′ so that |j(α)− j(α′)| > ε. Without loss of generality, let j(α) < j(α′).

Now, choose x ∈ X so that g(x, α) < j(α) + ε/3. Then g(x, α′) < j(α) +
2ε/3 < j(α′), contradicting j(α′) = minx∈X g(x, α).

Using these, we can now prove Theorem 2.3:

Proof. Let ε > 0, by Lemma 2.1 there exists δ′ > 0 such that

g(x, α)− g(x(α), α) < δ′ ⇒ ‖x− x(α)‖ < ε.

By Lemma 2.2, j(α) is continuous. Since g(x, α) is uniformly continuous , we
can choose δ so that

|α− α′| < δ → |j(α)− j(α′)| < δ′/3 and ∀x, |g(x, α)− g(x, α′)| < δ′/3

giving

|g(x(α), α)− g(x(α′), α)| < |g(x(α), α)− g(x(α′), α′)|+ |g(x(α′), α′)− g(x(α′), α)|
= |j(α)− j(α′)|+ |g(x(α′), α′)− g(x(α′), α)|
< δ/3 + δ/3
< δ

from which we conclude ‖x(α)− x(α′)‖ < ε.

2.2 The inner optimization

Theorem 2.4. Let λk →∞ and assume that

xk = argmin
x∈(W 1)n

l(x) + λkP (x|θ)

is well defined and uniformly bounded over λ. Then xk converges to x∗ with
P (x∗|θ) = 0.

Proof. We first note that we can re-express xk as

xk = argmin
x∈(W 1)n

(1− αk)l(x) + αkP (xk|θ) (8)

where αk = λk/(1 + λk) → 1.
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By the continuity of point-wise evaluation in (W 1)n, l(x) is a continuous
functional of x and P (x|θ) is similarly continuous. Since the xk lie in a bounded
set X , we have that

l(x) < F ∗ and P (x|θ) < P ∗

for all x ∈ X . Both l(x) and P (x|θ) are bounded below by 0 and we note that

g(x, α) = (1− α)l(x) + αP (x|θ)

is uniformly bounded on C by 0 and F ∗ + P ∗ and is therefore uniformly contin-
uous in α and x.

By Theorem 2.3,
x(α) = argmin

x∈C
g(x, α)

is a continuous function from (0, 1) to (W 1)n. Since ‖x(α)‖ is bounded by
assumption, it is uniformly continuous. Since αn → 1 is convergent, we must
have that xn = x(αn) → x∗. By the continuity of P (x|θ), P (x∗|θ) = 0.

Note that if it were possible to define x(α) as a continuous function on [0, 1], the
need for a bound on ||x(α)|| would be removed. However, since we do not expect
g(x, 1) = P (x|θ) to have a well-defined minimum, boundedness is required to
ensure that x(α) has a limit as α → 1.

We can now go further when P (x|θ) is given by (4) by specifying that x∗

is the solution of the differential equations (1) that is obtained by minimizing
squared error over the choice of initial conditions. To see this, we observe that
Theorem 2.1 ensures that

ẋ(t) = f(x,u, t|θ).

with

x(t0) = x0

specifies a unique element of (W 1)n. Let

F = {x, P (x|θ) = 0},

then

lim
k→∞

l(xn) ≤ min
x∈F

l(x).

Since l is a continuous functional on (W 1)n, and P (x∗|θ)0, we must have

l(x∗) = min
x∈F

l(x).

By the assumption that the solutions to (8) are well defined and bounded, this
specifies a unique set of initial conditions x∗0 such that

ẋ∗(t) = f(x∗,u, t|θ).
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with

x∗(t0) = x∗0.

2.3 The outer optimization

Theorem 2.5. Let X ⊂ (W 1)n and Θ ⊂ Rp be bounded. Let

xθ,λ = argmin
x∈X

l(x) + λP (x|θ)

be well defined for each θ and λ, define x∗θ to be such that

l(x∗θ) = min
x:P (x|θ)=0

l(x)

and let
θ(λ) = argmin

θ∈Θ

l(xθ,λ) and θ∗ = argmin
θ∈Θ

l(x∗θ)

also be well defined for each λ. Then

lim
λ→∞

θ(λ) = θ∗

Proof. The proof is very similar to that of Theorem 2.4. Setting α = λ/(1 + λ)

g(x, α,θ) = (1− α)l(x) + αP (x|θ)

is uniformly continuous in α, θ and x. As observed in Theorem 2.4, xθ,λ can
be equivalently written as

xθ,α = argmin
x∈(W 1)k

g(x, α,θ).

with αλ/(1+λ). By Theorem 2.3, xθ,α is continuous in θ and α. On the set X ,
therefore, l(x) is uniformly continuous in x and xθ,α is uniformly continuous
in θ and α. l(xθ,α) is therefore uniformly continuous in θ and α. Under the
assumption that θ(α) is well defined for each α, we can now employ Theorem
2.3 again to give us that θ(α) is continuous in α and the boundedness of Θ
provides uniform continuity.
Assume that

θ̃ = lim
α→1

θ(α) 6= θ∗

and in particular ‖θ̃− θ∗‖ > ε. From Lemma 2.1 there must exist a δ > 0 such
that

l(x∗θ∗) < l(x∗θ)− δ.

for all ‖θ − θ∗‖ > ε/2. Since θ(α) is uniformly continuous in α, there is some
a such that ‖θ(α)− θ∗‖ > ε/2 for all α > a. Now by the uniform continuity of
l(xθ,α

) in α and θ, we can choose a1 > a so that∣∣∣l(xθ(α),α)− l(x∗θ)
∣∣∣ < δ/3
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for all α > a1. By the same uniform continuity, we can choose α > a1 so that

|l(xθ∗
,α)− l(x∗θ∗)| < δ/2

giving
l(xθ∗

,α) < l(xθ(α),α)

contradicting the definition of θ(α). Finally, note that α is also uniformly
continuous in λ and limλ→∞ α(λ) = 1.

3 Matrix calculations for profiling

The calculations used throughout [Ramsay et. al. 2007] have been based on
matrices defined in terms of derivatives of J and H with respect to θ and c.
In many cases, these matrices are non-trivial to calculate and expressions for
their entries are derived here. For these calculations, we have assumed that the
outer criterion, H is a straight-forward weighted sum of squared errors and only
depends on θ through x.

3.1 Inner optimization

Using a Gauss-Newton method, we require the derivative of the fit at each
observation point:

dxi(ti,k)
dci

= Φi(ti,k)

where Φi(ti,k) is the vector corresponding to the evaluation of all the basis
functions used to represent xi evaluated at ti,k. This gradient of xi with respect
to cj is zero.

A numerical quadrature rule allows the set of errors to be augmented with
the evaluation of the penalty at the quadrature points and weighted by the
quadrature rule:

(λivq)1/2 (ẋi(tq)− fi(x(tq),u(tq), tq|θ))

Each of these then has derivative with respect to cj :

(λivq)1/2 (ẋi(tq)− fi(x(tq),u(tq), tq|θ)) I(i = j)DΦi(tq)

−

(
n∑

k=1

(λivq)1/2 dfk

dxj
(ẋi(tq)− fi(x(tq),u(tq), tq|θ))

)
Φj(tq)

and the augmented errors and gradients can be used in a Gauss-Newton scheme.
I() is used as the indicator function of its argument.

7



3.2 Outer optimization

As in the inner optimization, in employing a Gauss-Newton scheme, we merely
need to write a gradient for the point-wise fit with respect to the parameters:

dx(ti,k)
dθ

=
dx(ti,k)

dc
dc
dθ

where dx(ti)/dc has already be calculated and

dc
dθ

= −
[
d2J

dc2

]−1
d2J

dcdθ

by the implicit function theorem.
Hessian matrix d2J/dc2 may be expressed as a block form, the (i, j)th block

corresponding to the cross-derivatives of the coefficients in the ith and jth com-
ponents of x. This block’s (p, q)th entry is given by:(

ni∑
k=1

φip(ti,k)φjq(ti,k) + λ

∫
φip(t)φjq(t)dt

)
I(i = j)

− λi

∫
φ̇ip(t)

dfi

dxj
φjq(t)dt− λj

∫
φip(t)

dfi

dxj
φ̇jq(t)dt

+
∫

φip(t)

[
n∑

k=1

λk

(
d2fk

dxidxj
(fk − ẋk(t)) +

dfk

dxi

dfk

dxj

)]
φjq(t)dt

with the integrals evaluated by numeric integration. The arguments to fk(x,u, t|θ)
have been dropped in the interests of notational legibility.

We can similarly express the cross-derivatives d2J/dcdθ as a block vector,
the ith block corresponding to the coefficients in the basis expansion for the ith
component of x. The pth entry of this block can now be expressed as:

λi

∫
dfi

dθ
φip(t)dt−

∫ ( n∑
k=1

λk

[
d2fk

dxidθ
(fk − ẋk(t)) +

dfk

dxi

dfk

dθ

])
φi,p(t)dt

3.3 Estimating the variance of θ̂

The variance of the parameter estimates is calculated using

dθ̂

dy
= −

[
d2H

dθ2

]−1
d2H

dθdy
,

where
d2H

dθ2 =
∂2H

∂θ2 + 2
∂2H

∂ĉ∂θ

∂ĉ
∂θ

+
(

∂ĉ
∂θ

)′
∂2H

∂ĉ2

∂ĉ
∂θ

+
∂H

∂ĉ
∂2ĉ
∂θ2 , (9)

and

d2H

dθdy
=

∂2H

∂θ∂y
+

∂2H

∂ĉ∂y
∂ĉ
∂θ

+
∂2H

∂θ∂ĉ
∂ĉ
∂y

+
∂2H

∂ĉ2

∂ĉ
∂y

∂ĉ
∂θ

+
∂H

∂ĉ
∂2ĉ

∂θ∂y
. (10)
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The formulas (9) and (10) for d2H/dθ2 and d2H/dθdy involve the terms ∂ĉ/∂y,
∂2ĉ/∂θ2 and ∂2ĉ/∂θ∂y. In the following, we derive their analytical formulas by
the Implicit Function Theorem. We introduce the following convention, which
is caller Einstein Summation Notation. If a Latin index is repeated in a term,
then it is understood as a summation with respect to that index. For instance,
instead of the expression

∑
i aixi, we merely write aixi.

• ∂ĉ
∂y
Similar as the deduction for dĉ/dθ, we obtain the formula for ∂ĉ/∂y by
applying the Implicit Function Theorem:

∂ĉ
∂y

−
[
∂2J(c|θ,y)

∂c2

∣∣∣∣
ĉ

]−1[
∂2J(c|θ,y)

∂c∂y

∣∣∣∣
ĉ

]
. (11)

• ∂c2

∂θ∂y
By taking the second derivative on both sides of the identity ∂J(c|θ,y)/∂c|ĉ =
0 with respect to θ and yk, we derive:

d2

dθdyk

(
∂J(c|θ,y)

∂c

∣∣∣∣
ĉ

)
∂3J(c|θ,y)
∂c∂θ∂yk

∣∣∣∣
ĉ

+
∂3J(c|θ,y)
∂c∂θ∂ci

∣∣∣∣
ĉ

∂ĉi

∂yk

+
∂3J(c|θ,y)

∂c2∂yk

∣∣∣∣
ĉ

∂ĉ
∂θ

+
∂3J(c|θ,y)

∂c2∂ci

∣∣∣∣
ĉ

∂ĉi

∂yk

∂ĉ
∂θ

+
∂2J(c|θ,y)

∂c2

∣∣∣∣
ĉ

∂2ĉ
∂θ∂yk

= 0 (12)

Solving for ∂2ĉ
∂θ∂yk

, we obtain the second derivative of ĉ with respect to θ

and yk:

∂2ĉ
∂θ∂yk

= −
[
∂2J(c|θ,y)

∂c2

∣∣∣∣
ĉ

]−1[
∂3J(c|θ,y)
∂c∂θ∂yk

∣∣∣∣
ĉ

+
∂3J(c|θ,y)
∂c∂θ∂ci

∣∣∣∣
ĉ

∂ĉi

∂yk

+
∂3J(c|θ,y)

∂c2∂yk

∣∣∣∣
ĉ

∂ĉ
∂θ

+
∂3J(c|θ,y)

∂c2∂ci

∣∣∣∣
ĉ

∂ĉi

∂yk

∂ĉ
∂θ

]
(13)

• ∂2ĉ
∂θ2

Similar to the deduction of ∂2ĉ/∂θ∂yk, the second partial derivative of c
with respect to θ and θj is:

∂2ĉ
∂θ∂θj

= −
[
∂2J(c|θ,y)

∂c2

∣∣∣∣
ĉ

]−1[
∂3J(c|θ,y)
∂c∂θ∂θj

∣∣∣∣
ĉ

+
∂3J(c|θ,y)
∂c∂θ∂ci

∣∣∣∣
ĉ

∂ĉi

∂θj

+
∂3J(c|θ,y)

∂c2∂θj

∣∣∣∣
ĉ

∂ĉ
∂θ

+
∂3J(c|θ,y)

∂c2∂ci

∣∣∣∣
ĉ

∂ĉi

∂θj

∂ĉ
∂θ

]
(14)

When estimating ODE’s, we define J(c|θ,y) as (3) and H(θ, ĉ(θ)|y) as (5), and
further write the above formulas in terms of the basis functions in Φ and the
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functions f on the right side of the differential equation. For instance, d2J/dc2

is a block-diagonal matrix with the ith block being wiΦi(ti)T Φi(ti) and dJ/dc
is a block vector containing blocs −wiΦi(ti)T (yi − xi(ti)).

The three-dimensional array ∂3J/∂c∂cp∂cq can be written in the same block
vector form as ∂2J/∂c∂θ with the uth entry of the kth block given by∫ ( n∑

l=1

λl

[
d2fl

dxidxj

dfl

dxk
+

d2fl

dxidxk

dfl

dxj
+

d2fl

dxjdxk

dfl

dxi

])
φip(t)φjq(t)φku(t)dt

+
∫ n∑

l=1

λl

(
d3fk

dxidxjdxk
(fl − ẋl(t))

)
φip(t)φjq(t)φku(t)dt

− λi

∫
d2fi

dxjdxk
φ̇ip(t)φjq(t)φku(t)dt− λj

∫
d2fj

dxidxk
φip(t)φ̇jq(t)φku(t)dt

− λk

∫
d2fk

dxidxj
φip(t)φjq(t)φ̇ku(t)dt

assuming cp is a coefficient in the basis representation of xi and cq a corresponds
to xj . The array ∂3J/∂c∂θi∂θj is also expressed in the same block form with
entry p in the kth block being:∫ ( n∑

l=1

λl

[
d2fl

dθidθj

dfl

dxk
+

d2fl

dθidxk

dfl

dθj
+

d2fl

dθjdxk

dfl

dθi

])
φkp(t)dt

+
∫ n∑

l=1

λl

(
d3fk

dxkdθidθj
(fl − ẋl(t))

)
φkp(t)dt− λk

∫
d2fk

dθidθk
φkp(t)dt.

∂3J/∂c∂cp∂θi is in the same block from, with the qth entry of the jth block
being:∫ ( n∑

l=1

λl

[
d2fl

dθidxj

dfl

dxk
+

d2fl

dθidxk

dfl

dxj
+

d2fl

dxjdxk

dfl

dθi

])
φkp(t)φjq(t)dt

+
∫ n∑

l=1

λl

(
d3fk

dxjdxkdθi
(fl − ẋl(t))

)
φkp(t)φjq(t)dt

− λj

∫
d2fj

dθidxk
φ̇jq(t)φkp(t)dt− λk

∫
d2fk

dθidxj
φjq(t)φ̇kp(t)dt

where cp corresponds to the basis representation of xk.
Similar calculations give matrix d2H/dθdy explicitly as:

dĉ
dθ

T [ ∂2H

∂ĉ∂y
+

∂2H

∂c2

dĉ
dy

]
− ∂H

∂c

[
∂2H

∂c2

]−1
{

N∑
p,q=1

dĉp

dθ

T ∂3J

∂c∂cp∂cq

dĉq

dy
+

N∑
p=1

∂3J

∂c∂cp∂θ

dĉp

dy

}
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with dĉ/dy given by

−
[
∂2J

∂c2

]−1
∂2J

∂c∂y

and ∂2J/∂cdy being block diagonal with the ith block containing wiΦi(ti).
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