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Abstract

This monograph details the implementation and use of R routines for
smoothing-based estimation of continuous-time nonlinear dynamic systems.
These routines represent and extension of the generalized profiling (GP) meth-
ods described in Ramsay et al. (2007) for estimating parameters in nonlinear
ordinary differential equations (ODEs). It includes an interface to the R pack-
age fda. The package also supports discrete-time systems. We describe the
methodological and computational framework and the necessary steps to use
the software.
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1 Overview of the CollocInfer package

The CollocInfer package implements smoothing-based approaches to estimating pa-
rameters in dynamic systems. Dynamic systems model the nonlinear behavior often
found in real-world processes, and, because they involve either derivatives (contin-
uous time) or differences (discrete time), they are fundamentally models for how
the process changes. These systems are typically nonlinear and involve multiple
variables. The systems can involve either continuous or discrete time, although
for simplicity the notation used in the manual will mostly be for continuous time
systems.

In mathematical notation, the CollocInfer package assumes an underlying real-
world possibly d-dimensional multivariate process x whose state at time t is the
vector x(t) of length d. The state is assumed to satisfy a set of ordinary differential
equations

d

dt
x(t) = f[t,x(t),θ],

the ith of which is
d

dt
xi(t) = fi[t,x(t),θ], (1)

The right sides of these equations, which we call in this manual right-hand
functions, are defined by a set of known functions fi, i = 1, . . . , d, that depend
on the current value of potentially all of the state variables in x. The right-hand
functions may also depend on t in ways other than through x(t). For example,
it is common to have right-hand functions of the form fi(u(t),x(t),θ) where the
functions defining vector u(t) represent external inputs to the dynamic systems
which are often called forcing functions.

The right side of these equations fi[t,x(t),θ] is also defined by a set of parameters
contained in the parameter vector θ of length p. The primary goal of the package
is to estimate these parameters.

The methods described represent an extension of the generalized profiling (GP)
methods described in Ramsay, Hooker, Campbell, and Cao (2007) for estimating
parameters in ordinary differential equations. It is not essential to have read this
paper in order to use this library, since this manual aims to present the essential
ideas in that paper with only as much technical detail as is necessary. The remaining
subsections of this section provide this exposition. Users already sufficiently familiar
with this material may want to skip to Section 2 where instructions on how to use
the package begin.

The code builds on, and interfaces with the fda library for functional data
analysis. For a full review of functional data analysis, see Ramsay and Silverman
(2005), but a more applied and informal introduction intended for users of the R
language is Ramsay, Hooker, and Graves (2009). Installation of the fda library is
not required to use this library, but at least some understanding of functional data
analysis is likely to be helpful.

In the remainder of this introduction we

• specify some notation for the dimensions of various vectors, matrices and
arrays
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• give a simple example of a dynamic system

• describe the collocation approach to estimating state functions xi, and

• summarize the generalized profiling approach to parameter estimation.

The code is structured to be extendable to more general problems. In particular,
this framework allows second and higher-order dynamics to be implemented natu-
rally. Additionally, while our discussion of these methods is focussed for t taking
real values for continuous time systems or integers for discrete-time systems, there
is nothing inherent in the code that prevents the estimation of spatial-temporal
processes, integro-differential systems and many more options.

1.1 Some notation for the data and the model

Bold-faced variables such as x refer to vectors or vector-valued functions, and xi
refers to the ith element of x. Capital letters refer to matrices or matrix-valued
functions.

We will refer to the collection of observed data, including observation times, as
Y , even when the data may not fit into matrix format. Specifically, yij indicates the
observation at time tj of state variable xi, an observation that is usually subject to
some error. For simplicity, we assume in this manual that the times of observation
are common to all observed variables. We do not assume, however, that all state
variables are observed, and when the ith variable is unobserved, the yij ’s can be
considered to all have the R “not available” or missing data value NA.

Variables in typewriter font, such as p, refer to variable names in the R code.
For example, we use p to refer to the length of the parameter vector, but θ to refer
to the parameter vector itself in the R code.

Here is a list of notation for various important constants such as the dimensions
of the data.

d: the dimension of state vector x, which is the number of differential equations in
the dynamic system.

do: the number of state functions xi that are observed. It is assumed that not all of
the state functions are associated with observations, so that it is quite likely
that that do < d. In that event, we use the Do to indicate the set of indices i
corresponding to observed variables.

p: the dimension of the parameter vector θ.

n: the number of times tj at which a continuous time system is observed.

N : the number of time steps in discrete-time systems.

K: the number of basis functions. In practice, this is often the same as either Q or
N .
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L: the number of discrete points in a discrete time system. Note that observations
are not automatically taken at points corresponding these discrete points, so
that L and n can be different.

Q: the number of quadrature points to evaluate the integrals associated with continuous-
time systems.

1.2 An example: The FitzHugh-Nagumo equations

The FitzHugh-Nagumo equations provide a simple but fairly representative test-bed
for the understanding and applying the CollocInfer package. They are given by a
two-variable (d = 2) differential equation:

d

dt
V = c(V − V 3/3 +R)

d

dt
R = −(V − a+ bR)/c. (2)

These equations are intended to capture the essential dynamic properties of electri-
cal response of a neuron, which consists of a string of localized changes in voltage V
across the membrane of the neuron. Variable R represents a sum of “recovery” ion
currents. The parameters to be estimated are a, b and c (p = 3). State variable V ,
or x1 in general notation, is a measurable variable, but variable R (or x2) represents
a collection of measurable variables, and is therefore not itself directly measurable.
We would normally assume that we only have observations of V , but for purposes
of illustration, we might pretend that data are available for R also.

1.3 The collocation method and basis function expansions
for x

The generalized profiling methodology uses the collocation method for the approxi-
mation of solutions of differential equations. The state of a system of d differential
equations at time t is denoted in this manual by the d-dimensional vector x(t), and
the collocation approach represents x(t) as a basis expansion:

x(t) = Φ(t)C (3)

using a set of K basis functions whose values at time t are contained in vector
Φ(t) = (φ1(t), . . . , φK(t))′, and K by d matrix C contains in its columns coefficients
of the basis function expansion of each variable. That is, the ith state at time t has
the basis function expansion

xi(t) = Φ(t)ci =
K∑
k=1

cikφk(t), (4)

where ci is a vector of coefficients cik of length K contained in the ith column of C.
This package uses B-spline basis functions for φk, k = 1, . . . ,K. B-spline basis

functions are constructed by joining polynomial segments end-to-end at junction
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points called knots. We again refer the reader who needs further explanation to
references such as Ramsay et al. (2009).

Both the number and location of knots play critical roles in the success of a
collocation analysis. It is fairly typical that dynamic systems exhibit sharp curva-
ture over small time intervals, often associated with a sudden change in an input
variable. There must be enough knots in the vicinity of these regions to accom-
modate the required curvature. A collocation analysis must often be conducted
through several cycles, refining knot placement at each cycle to allow for curvature
suggested by the results of the previous cycle. A common strategy is begin with
a dense equally-spaced knot sequence, and over subsequent cycles to reduce the
number of knots over intervals of mild curvature.

1.4 Parameter estimation by generalized profiling (GP)

Here we describe the generalized profiling (GP) strategy for parameter estimation
as presented in Ramsay et al. (2007). We here discuss GP in the more familiar
context of minimizing error sum of squares measures of fit to the data and fit to
the differential equation, but in Section 4 cover various extensions involving more
general user-defined measures of fit, as well as other useful features.

The generalized profiling methodology, also called parameter cascading, is a two-
level procedure involving a low-level or inner optimization step nested within a high
level outer optimization. The functions being optimized are not the same for all
levels; the lower level optimization involves a smoothed or regularized measure of
fit, and the upper level is a more straightforward fit measure.

In the inner optimization, the parameters in vector θ are held fixed, and an
inner optimization criterion J(C|θ) is optimized with respect to the coefficients in
matrix C only. In effect, this makes C a function of θ, that is, C(θ), since each
time θ is changed in any way, it is necessary to repeat this inner optimization step.
A function defined in this manner by optimizing a criterion is called an implicit
function.

The lower or inner level fitting criterion is

J(C|θ) =
∑
i∈Do

n∑
j=1

wij [yij − Φ(tj)ci]
2 +

d∑
i=1

λi

∫ [
d

dt
Φ(t)ci − fi(t,Φ(t)C,θ)

]2
dt

(5)
where ci is the ith row of coefficient matrix C.

The first term in J measures how well the state function values xi(tj) fit the
data yij in terms of a weighted error sum of squares. The summation over i is only
over those state functions or processes that are actually observed.

The second term measures how closely each of the state functions satisfy the
corresponding differential equation (1), expressed in terms of the integrated square
of the difference between the right and left sides of (1). Here i ranges through all
the functions xi. This term, too, is a weighted sum of squares, but in this case the
weights λi vary over i, but not over j. The summation over time index j in the first
term is now replaced by an integration over t.

6



The smoothing parameters λ1, . . . , λd arbitrate between these two competing
types of fit. As a λi gets larger and larger, more and more emphasis is put on having
xi satisfy the differential equation, as opposed to fitting the data. Conversely, as λi
goes to zero, so much emphasis is put on fitting the data that xi will eventually fit
the data points exactly, given enough basis functions. Smoothing parameters give
us a valuable degree of control over which of these types of fit we wish to emphasize.
In fact, it is usual to use a value of each λi that strikes a reasonable compromise,
and to compare these results to those obtained as λi goes large enough to define a
nearly exact solution to the differential equation.

The estimate for θ is determined at the higher or outer level, where the GP
method computes those θ-values that minimize only the first data-fitting term

H(θ) =
∑
i∈D0

n∑
j=1

wij
[
yij − Φ(tj)ci(θ)

]2
. (6)

Note that ci(θ) is a function of the parameters in θ, since, for any set of θ-values,
criterion J(C|θ) defined in (5) is optimized with respect to the coefficients in ci.
This is the key idea underlying the generalized profiling or parameter cascade algo-
rithm (Cao and Ramsay, 2009).

Ramsay et al. (2007) demonstrated that as the λi →∞ the estimated parameters
converge on those that would be estimated by solving (1) for each value of θ and
then minimizing (6) over both θ and initial conditions x(t0). Moreover, the GP
process provides for robustness against random disturbances of model (1). The
methodology was implemented in a Matlab package; see Hooker (2006).

In order to provide gradients for the optimization of H, we must allow for the
fact that the coefficient matrix C(θ) is implicitly a function of θ. The generalized
profiling procedure uses the implicit function theorem to define the partial deriva-
tives of H with respect to components of vector θ as follows:

dH

dθ
=
[

∂2J

∂C∂CT

]−1
∂2J

∂C∂θT
.
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2 Setting up the data for a CollocInfer analysis

The observations themselves are supplied as a matrix with n rows and d columns;
rows corresponding to times tj and columns to observed state variables xi, i ∈ D0..
If there are repeated time series, they can be incorporated as described in Section
??.

Alternatively, the shortcut functions described in Section 7 allow data to be
supplied as an array with dimensions n,M and d where the middle dimension of
size M refers to replications. For these functions defaults require that a single
equation with repeated measurements must be supplied in array format, with the
middle dimension being of length 1, otherwise, CollocInfer will misinterpret the
input. Note that in using other functions, you will need to concatenate your data
observations. Function sse.setup will output data in a form that can be used.

It is common for only some of the state variables to be associated with mea-
surements. For example, in the FitzHugh Nagumo (FH) equations, variable V is
voltage and can be measured, but variable R is a composite of various processes
that produce the recovery phase in a neural spike potential, and is therefore not
measureable.

When there are unmeasured variables, the data must still be set up as if all
variables were measured; that is, as an n by d matrix. But those variables which
are unmeasured must contain NA’s in all locations in the appropriate dimension.
For example, in the FH case unmeasured R, we would include a statement such
as data[,2] = NA. Alternatively, specific measurement models can be employed.
For the case of unmeasured components, or measurements of linear combinations
of components the pre-defined genlin functions; see Section 4.4.1.
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3 Setting up the functions: Basic level using squared
errors

We now turn to the functions that the user must either program or approximate in
order to use the CollocInfer package. If the fit to the data and the fit to the differ-
ential equation are evaluated in terms of the sum and the integral of squared errors,
respectively, then the this task is restricted to setting up the functions or differences
for evaluating the functions fi in the right side of the differential equation, along
with various of its derivatives. This next section explains how to do this.

3.1 Functions for evaluating fi(t, x, θ) and its derivatives

A differential equation is defined by the right sides of the differential equations
fi(t,x,θ), i = 1, . . . , d. We will refer to these functions as right-hand functions in
this manual. In the FitzHugh-Nagumo equations (2), the right-hand functions are
f1(t,x,θ) = c(V − V 3/3 + R) and f2(t,x,θ) = (V − a + bR)/c, where x = (V,R)′

and θ = (a, b, c)′. (Note: These equations are a trifle unusual in that there is no
dependency on t except through the state vector x(t).)

The user must supply a set of R functions that evaluate the values of certain
mathematical functions and their derivatives at times of observation. We begin
with the R functions that are associated with the right-hand functions fi(t,x,θ).
These are obligatory for any application of the CollocInfer package.

In order for the generalized profiling to do its job, the user must also supply
functions to evaluate a certain number of partial derivatives of each right-hand
function with respect to both the state vector x and the parameter vector θ, as well
as the value of each fi(t,x,θ) itself.

The functions that evaluate right-hand functions and their derivatives are sup-
plied to CollocInfer in a named list object, and the names used for these list elements
must be as shown below in typewriter font in order for the CollocInfer functions to
be able to locate these functions. Of course, other named list elements may also be
included for purposes specific to an application, but these following named elements
are required.

fn: calculates the value of each of d right-hand functions at the n times of obser-
vation. This function returns an n× d matrix of values.

dfdx: calculates the n values of the derivative of each right-hand function with
respect to the states. This function returns an n× d× d array.

dfdp: calculates the n values of the derivative of each right-hand function with
respect to parameters. This function returns an n× d× p array.

d2fdx2: calculates the n values of the second derivatives with respect to states.
This function returns an n× d× d× d array.

d2fdxdp: calculates the n values of the cross derivatives of each right-hand function
with respect to state and parameters. This function returns an n× d× d× p
array.
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It is extremely important that you coerce the outputs of each of these functions
to be matrices and arrays with the correct number of dimensions and dimension
sizes. The R language has a nasty habit of changing the class of matrices and
arrays when it indexes them with single indexes, and not telling you. It’s easy to
get into trouble unless you pay close attention to this. Here’s some R code that
illustrates the problem:

> z = array(0,c(2,2,2))
> class(z)
[1] "array"
> class(z[1,,])
[1] "matrix"
> class(z[1,1,])
[1] "numeric"

The four arguments to each function are

times: either a vector of times of observations, or a vector of quadrature points
depending on which CollocInfer function is calling the function.

x: a matrix of state values corresponding to the times argument. The matrix has d
columns corresponding to state variables and n rows corresponding to times.
Note that this argument contains state values, not data values, and therefore
all d columns should contain only numeric data.

p: a vector of parameter values

more: an optional argument containing any other information required to compute
the results. Of particular importance are any constant or functional input
variables with values u`(t), called forcing terms. In the event that a variety
of types of additional input are required, the more object will usually be a list
object.

But, in addition, you may wish to use the names list object to supply a right hand
side evaluation function for function lsoda. We use this function to approximate
the solution to a differential equation given initial values for the states of the system,
and this we often do after parameters defining the system have been estimated and
we want to display what a solution to our estimated equation looks like. Function
lsoda, however, does not normally use the more argument, and so you may wish
to also provide a version of function fn, which might be called fn.ode, which is
identical to fn except for not using the final argument. For an illustration of this,
display the function make.fhn() that sets up the FitzHugh-Nagumo equation list
object.

We illustrate the setup of these functions by the simplest of differential equation
systems, a single first order constant coefficient system:

Dx(t) = −βx(t)

Note how we coerce the returned value of each function to a matrix or array of the
appropriate dimensions.
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make.O1fn <- function()
{
# set up functions for Dx = -beta*x

O1fun = function(times, x, p, more) {
n = length(times); d=1; npar=1
beta = p(1)
f = matrix(-beta*x,n,d)
return(f) }

O1dfdx = function(times, x, p, more) {
n = length(times); d=1; npar=1
beta = p(1)
dfdx = array(-rep(beta,n),c(n,d,d))
return(dfdx) }

O1dfdp = function(times, x, p, more) {
n = length(times); d=1; npar=1
dfdp = array(-x,c(n,d,npar))
dfdp[,1,] = cbind(dfdp1,dfdp2,dfdp3)
return(dfdp) }

O1d2fdx2 = function(times, x, p, more) {
n = length(times); d=1; npar=1
d2fdx2 = array(0,c(nobs,d,d,d))
return(d2fdx2) }

O1d2fdxdp = function(times, x, p, more) {
n = length(times); d=1; npar=1
d2fdxdp = array(-1,c(n,d,d,npar))
return(d2fdxdp) }

return(list(fn = O1fun, dfdx = O1dfdx,
dfdp = O1dfdp, d2fdx2 = O1d2fdx2,
d2fdxdp = O1d2fdxdp))

}

It is wise to include argument checks in at least the fn function. For example, the
number of columns in argument x should be equal to the number of state variables
that the function is designed to handle; and checks may be needed for the contents
of the more argument as well. Also, if there is the possibility of certain derivatives
taking inadmissible values such as Inf or zero, this also should be checked.

Here is a function that evaluates the two right-hand functions for the FitzHugh-
Nagumo system with checks. This system is a bit special in that the times argument
has no role to play and the function does not need whatever is in the more argument.

fhn.fun <- function(times, x, p, more) {
# check arguments for various conditions
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if (dim(x)[1] != length(times))
stop("Length of times not equal to number of rows of x.")

if (dim(x)[2] != 2) stop("Argument x does not have 2 columns.")
if (any(is.na(x))) stop("Argument x contains NA or NaN values.")
if (length(p) != 3) stop("Argument p is not of length 3.")
# compute right hand function values in matrix Dx
Dx = x # The output is a matrix with the same dims as x
Dx[,1] = p[1]*(x[,1] - x[,1]^3/3 + x[,2]) # V derivative
Dx[,2] = -(x[,1] - p[1] + p[2]*x[,2])/p[3] # R derivative
return(Dx)

}

The return statement for function make.fhn in the CollocInfer package that
defines the right-hand functions is

return(list(fn = fhn.fun,
dfdx = fhn.dfdx,
dfdp = fhn.dfdp,
d2fdx2 = fhn.d2fdx2,
d2fdxdp = fhn.d2fdxdp))

In each argument of function list, the string before the = must be exactly as
shown, but the string after begins the user-defined name of the list containing the
required functions followed by . and then the member name within that list.

The CollocInfer package requires the least effort if the fit to the data in the first
term is a weighted sum of squared residuals and the fit to the state derivatives in
its second term is defined by the integral of the squares of the errors or residuals,
that is,

J(C|θ) =
∑
i∈Do

n∑
j=1

wij [yij − xi(tj)]2 +
d∑
i=1

λi

∫ [
d

dt
xi − fi(t,x(t),θ)

]2
dt.

Probably most applications will use this squared error criterion. Setting up
the right-hand function evaluators is pretty much all the coding that is required of
the user, and at this point the reader could proceed to subsequent sections of this
manual, or even directly to the worked examples in Sections 9 and 11.

3.2 Computing derivatives by differencing: make.findif.loglik

When the equations are as simple as they are for the FitzHugh-Nagumo system,
many of us can get the derivatives right without too much trouble, but if the systems
are large or the equations complex, the calculus can become formidable. Even if
one thinks one has them right, it can be a comfort to be able to check the results
without too much effort.

CollocInfer function make.findif.loglik creates a list object whose members
calculate finite difference approximations to the various required derivatives of the
error sum of squares fit measure in the first term of J(C|θ). Finite differences are
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defined by adding a small amount ε to the quantity with respect to which the
derivative is to be taken. For example, the derivative of f with respect to x is
approximated by

∂f

∂x
≈ f(t, x+ ε,θ)− f(t, x,θ)

ε

The user must supply the actual value of ε to be used.
Since all quantities are perturbed by the same constant, it is essential that

all quantities to be differenced are on roughly the same scale. For the FitzHugh-
Nagumo system, this is V , R, a, b and c, and in fact they are on about the same
scale, namely one or unity. If this requirement is not satisfied, it is usually possible
to revise the equations and parameters so that it is.

If d and p are not overly large, this is not computationally intensive. Of course,
accuracy suffers, but for most purposes accuracy to within about four significant
digits is all that is required. If all the variables to be differenced are on the scale of
one or unity, then ε = 0.0001 might be about right. Some experimentation to see
that the required accuracy is achieved may be achieved by comparing results for
one or two easily calculated derivatives.

Function make.findif.loglik() produces a lik object with members having
names fn, dfdx, dfdy, dfdp, d2fdx2, d2fdxdy, d2fdy2, d2fdxdp, d2fdydp to cal-
culate the appropriate derivatives by fixed-step finite differencing. These functions
require the named list object more to contain entries

fn: a function that computes the values of the right-hand functions.

eps: the change δθ in the parameter to be used to compute the finite differences.

more: any additional inputs to more$fn.

3.3 Setting up a first FitzHugh Nagumo example

Here we give an example involving only minimal setup and use of CollocInfer func-
tions. We use functions create.bspline.basis and smooth.basis from the R
package fda to set up the analysis.

We assume that both variables are measured at 41 times spaced apart by 1/2 of
a time unit. Here we set up the observation times in vector times, and define the
state variable names.

times = seq(0,20,0.5)
FHN.xnames = c(’V’,’R’)

The data array FHN.data must have 41 rows and two columns. Its rows corre-
spond to 41 times of observation and columns to the variables, V andR, respectively.
Section 9 shows how data for this system can be simulated.

Next we invoke the pre-coded function make.fhn(), which is distributed with
the CollocInfer package in the demo folder. This function generates the named list
object FNH.fn that has as its members the functions to evaluate the right-hand
functions defined in (2).
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FHN.fn = make.fhn()

It might be helpful to look at this function by typing make.fhn() in the R command
window to see how the FNH.fn is constructed, so that you can see how you might
construct your own objects. What would happen, for example, if you deleted the
V 3 term in the first equation? Or changed the cube function to something else,
such as exp(V) - 1?

The collocation process requires a basis system φ for representing the state
functions. This code defines an order 3 B-spline basis function with a knot at every
fourth observation time.

FHN.knots = seq(0,20,2)
FHN.order = 3
FHN.nbasis = length(knots) + FHN.norder - 2
FHN.range = c(0,20)
FHN.basis = create.bspline.basis(FHN.range, FHN.nbasis,

FHN.order, FHN.knots)

Initial values for the coefficients in matrix C define state vector x = φC are
obtained by smoothing the raw data using the R package fda function smooth.basis
and then extracting the coefficients from the functional data object.

FHN.fdnames = list(NULL, NULL, FHN.xnames)
FHN.xfd = smooth.basis(times, FHN.data, FHN.basis,

fdnames=FHN.fdnames)$fd
FHN.coefs = FHN.xfd$coefs

We also need to supply some initial values for the parameters, supplied here in
vector FHN.pars0. The second statement attaches labels to the three parameters.

FHN.pars0 = c(0.2, 0.2, 3.0)
names(FHN.pars0) = c(’a’, ’b’, ’c’)

Profiled estimation is now completed by a call to function Profile.LS. Smooth-
ing parameter values λ are set to 10000 for both variable. The function returns
a named list object resultList containing, among other things, the final pa-
rameter estimates θ̂, the coefficient matrix estimate Ĉ, and the residual values
rij = yij − xi(tj).

FHN.lambda = 1e4*c(1,1)
resultList = Profile.LS(FHN.fn, data, time, pars0, FHN.coefs,

FHN.basis, FHN.lambda)

Finally, we extract from this list the results that we need for plots, further
analyses, and so on.

FHN.pars = resultList$pars
FHN.coefs = resultList$coefs
FHN.residuals = resultList$residuals
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We can avoid all the derivative coding in the definition of FHN.fn. The member
of FHN.fn that computes the state variables is FHN.fn$fn, and we could replace
the first argument of Profile.LS by FHN.fn$fn to use differencing to approximate
these derivatives.
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4 Setting up functions for customized fit measures

4.1 User-defined fit measures

In this CollocInfer R package, we make use of the same framework, but extend
the Matlab version in several useful ways.

The GP procedure described above uses a least squares measures of fit. In this
package we permit the user to employ other measures to define the quality of fit
for both terms in (5). In the lower or inner optimization step, where θ is fixed, C
minimizes

J(C|θ) =
∑
i∈Do

n∑
j=1

wijF{yij ; g[Φ(tj)ci]}+
d∑
i=1

λi

∫
P

[
d

dt
ciΦ(t), fi(t,Φ(t)C,θ)

]
dt.

(7)
This formulation introduces three new functions, each which can be defined by

the user.

1. Fit function F is a measure of fit to the data. It will often be the sum of
negative log density function values

F (yj) = −
∑
i∈Do

log pi(yi|xi(tj),θ).

In this case, F (yj) is the negative log likelihood of the observations associated
with the jth time value, and the sum over j is the total negative log likelihood
of the data. Note that we only sum over the state variables that are observed.

2. The function P in the second term quantifies failure to fit the differential equa-
tion, and can also be thought of as representing a negative log likelihood for
x. However, in order to avoid any possible confusion about which likelihood
we might be referring to, we shall refer to P (t) as measuring the roughness
or regularity of x at t, as is usual in functional data analysis, nonparametric
regression and most other branches of statistics. More general roughness mea-
sures using using higher order derivatives or spatial co-ordinates are possible
in CollocInfer.

3. The function g allows the possibility that the differential equation is actually a
model for a transformation of the process generating the data. For example,
g(x) = exp(x) indicates that the state value x(t) is actually a model for
log of the function underlying the observed data at time t, and allows the
user to ensure that the fit to the data will be positive. The exponential and
other commonly used transformations are pre-specified in CollocInfer, as is
the identity transformation g(x) = x, which is the default choice. However,
CollocInfer also permits the user to define g for unforeseen circumstances.

Notice that in both F and P we are no longer obliged to define fit in terms of
the size of a difference; we could, for example, use differences between logarithms,
differences between other transforms, or make no use of differencing at all.
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Suppose, now, that the user wants to define customized measures of fit, indicated
in (7), by defining at least one of F and P , and possibly g.

We refer to the data fit measure F in the first term as the lik fit, the derivative
fit measure P in the second term as the proc fit and the function g as the link
function. In particular, the lik fit will often be defined as − log py, the negative
of the sum of the logarithms of the probability density function values that model
the process conjectured to generate the residuals. Some applications will, of course,
require customized choices for only one lik, proc, and g, with the other being left
to be the default definition.

4.2 Defining lik objects to assess data fits

A customized lik fit measure F requires the coding of a set of functions for evaluat-
ing its values and those of various of its derivatives. The lik object is a named list
object with names for its members that must be exactly as shown below in order to
allow the information associated with these names to be accessed by other functions
in the CollocInfer package. Some of the names for these evaluator functions are also
used for the list object containing the evaluator functions for the right-hand func-
tions fi(t,x,θ) described above in Section 3.1. And they will also be used in the
proc list object described below in Section 4.3, as well in other named list objects.

The required names of the list members and their contents for the lik named
list object are:

bvals: an object defining the required basis values; this may vary depending on
fn.

fn: a function that calculates the data fit measure F at time tj taken over the
observed state variables, such as the negative log likelihood of the residuals.
This function returns a scalar.

dfdx: a function that calculates the partial derivatives of fn with respect to the
values of the state variables x. It returns a vector of length d.

dfdp: a function that calculates partial derivatives with respect to parameters. It
returns a vector of length p.

d2fdx2: a function that calculates second partial derivatives with respect to the
values of the state variables x. It returns a matrix of size d× d.

d2fdxdp: a function that calculates cross partial derivatives for state variable values
and parameters. It returns a matrix of size d× p.

more: This is an optional member that contains any additional inputs that the
functions may require. The more member is typically itself a named list with
members that can be referenced by various functions described later in the
manual.

The approximation of confidence regions for parameter estimates will also require
that the user-defined functions in the lik object also contain the following partial
derivatives with respect to the data argument y:
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dfdy: a function that calculates the partial derivatives of fn with respect to data
values. It returns a vector of length d, but the values returned for the unob-
served state values are not used.

d2fdy2: a function that calculates second partial derivatives with respect to the
data values. It returns a matrix of size d × d, but entries corresponding to
unobserved variables are not used.

d2fdxdy: a function that calculates partial cross derivatives with respect to the
data values and the state values. It returns a matrix of size d× d, but entries
corresponding to unobserved variables are not used.

The arguments for the evaluator functions fn to d2fdydp are the same as those
for the right-hand function evaluators fi(t,x,θ) described in Section 3.1 above, but
augmented by a first argument specifying the data and by a matrix of basis function
values. That is, they are

y: an n× d matrix or an n×N × d array of observation values

times: a vector of length n containing times of observations

x: an n× d matrix of state values corresponding to the times argument.

p: a vector of length p containing parameter values

more: an optional argument containing any other information required to compute
the results.

bvals: an n×K matrix containing the values of the basis functions at the obser-
vation times

These functions are returned in a named list object. The names for the elements
or entries in the list are the same as the list returned for the right-hand functions,
described in Section 3.1.

While calculating the likelihood is fairly straightforward for most distributions,
it can be somewhat more cumbersome to write down functions to calculate the four
different derivatives. Therefore a number of constructor functions have been created
to make these calculations easier. lik objects can be created by calls to make...
functions that produce a list with the appropriate slots. For each of these, the slot
more is required to have specific entries that are detailed below.

As in the basic function setup, we can here use CollocInfer function make.findif.loglik
to either check the derivative calculations, or even to substitute for programming
them entirely.

4.2.1 SSElik: The ordinary least squares lik object

This is not so much a likelihood as straight squared error. Function make.SSElik()
creates a list with entries fn, dfdx, dfdy, dfdp, d2fdx2, d2fdxdy, d2fdy2, d2fdxdp,
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d2fdydp. These functions calculate

l(y, t,x, p) =
d∑

i∈Do

wi(yi − fi(t,x, p))2

and its corresponding derivatives. They require more to contain functions fn, dfdx,
dfdp, d2fdx2, df2dxdp and more$more for further arguments. These functions take
the arguments t,x, p, more which are the same as the corresponding entries in the
lik constructions. However the function output should have an extra dimension.
Function fn is vector valued and returns a n× d array. Similarly, dfdp returns an
array of dimension n×d×p and so forth. The dimensions for the array go in order:
element of f , derivatives with respect to x, derivative with respect to p.

In addition, more should contain an element weights which contains a matrix
of the wi which should be of the same dimension as Y . It may also contain names,
giving the names of the states, if these are used in fn. Similarly, it may contain
parnames to give the names of the parameters.

4.2.2 multinorm: Generalized least squares data fits

This set of functions calculates a log multivariate normal distribution for each ob-
servation

`(y, t,x,θ) = {[y− f(t,x,θ)]TV−1(t,x,θ)[y− f(t,x,θ)]/2− log |V(t,x,θ)|}/2.

This is a generalization of the SSElik functions to correlated processes who’s corre-
lation may vary over time and the state variables. These are most useful for defining
proc functions.

Function make.multinorm() returns a lik objects with member names fn,
dfdx, dfdy, dfdp, d2fdx2, d2fdxdy, d2fdy2, d2fdxdp, d2fdydp which calculate
a multivariate normal distribution.

These functions require more to contain fn, dfdx, dfdp, d2fdx2, df2dxdp as in
SSElik. It must also contain members var.fn, var.dfdx, var.dfdp, var.d2fdx2,
var.df2dxdp to provide the same set of derivatives for V(t, x,θ). Since V(t, x,θ) is
matrix-valued, the output of these functions must have an extra dimension; giving
var.dfdp dimension n× d× d× p, for example.

In addition, more contains entries f.more for additional objects to be passed to
f and v.more contains additional objects to be passed to V. It may also contain
names, giving the names of the states, if these are used in fn and var.fn. Similarly,
it may contain parnames to give the names of the parameters.

But on occasion the distribution of the data or requirements for the roughness
penalty will suggest other choices of fit measures that the user can define. In this
case, evaluator functions must also be set up for these user-defined fit measures.
The next subsection shows how to do this, but CollocInfer nevertheless has built-in
procedures for doing this for the least squared error case, and these can be viewed
by typing make.SSElik() and make.SSEproc(). Looking at these can be a useful
way to see how to set up one’s own customized versions.
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4.3 Defining proc objects for assess equation fits

The proc object stores functions to calculate the second term, the roughness penalty
P . In fact, this task is not so different from what is required to compute the data-fit
lik term. An examination of both the least squares version of the inner optimization
criterion J in (5) and its more general version in (7) indicates that we

• replace the summation over n discrete time points tj by the integration over
continuous t, and

• replace the noisy observed data values yij by the current derivative estimates
dxi/dt, which, like the data, are not expected to be exactly equal to their
fitted values fi(t,x,θ).

4.3.1 Quadrature points tq and weights wq for numerical integration

Actually, at the computational level, the integral of P is necessarily approximated
by numerical quadrature. This involves a judicious discretization of t and replacing
the integral by a summation over quadrature points tq using quadrature weights
wq, so that∫ [

d

dt
Φ(t)ci − fi(t,Φ(t)C,θ)

]2
dt ≈

Q∑
q

wq

[
d

dt
Φ(tq)ci, fi(t,Φ(tq)C,θ)

]2
(8)

in the least squares case (5) and∫
P

[
d

dt
ciΦ(t), fi(t,Φ(t)C,θ)

]
dt ≈

Q∑
q

wqP

[
d

dt
Φ(tq)ci, fi(t,Φ(tq)C,θ)

]
(9)

in the more general setting (7).
Numerical quadrature plays an absolutely essential role in the collocation ap-

proach, or indeed in any method of approximating a solution to a differential equa-
tion. The user must supply these quadrature points and weights. The reader is
warned that more difficult dynamic systems involving sharp local curvatures in the
solutions will demand a more sophisticated knowledge of the topic of numerical
quadrature.

However, where solutions have only mild curvatures, the quadrature points tq
may be equally spaced and sufficient in number to capture the required detail in
the solution. The weights wq may be then equal to δ = 1/(tq − tq+1) everywhere
except at the end points, where they will be δ/2. This simple and naive approach
to quadrature is called the trapezoidal rule. Other quadrature methods such as
Simpson’s Rule of Gaussian quadrature are more accurate but more complicated to
set up.

4.3.2 Defining the proc functions and their arguments

As in the definition of the lik object, the proc is a named list, some of the names
being specifically required by the CollocInfer package, and of these the majority
being user-defined functions.
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The required names and their contents for the proc list are

fn: a function that calculates the log probability of the process; returns a scalar.

dfdc: a function that calculates the derivatives of fn with respect to coefficents in
C, returns a vector of length dK.

dfdp: a function that calculates the derivatives with respect to parameters in θ,
and returns an vector of length p.

d2fdc2: a function that calculates the second derivatives with respect to coeffi-
cients, and returns a matrix of size dK × dK

d2fdcdp: a function that calculates the cross derivatives of coefficients and param-
eters, and returns a matrix of size dK × p.

more: usually a named list object whose members provide additional information
defining these functions. Two members that may optionally be provided are

names: d names for the state variables.

parnames: p names for the parameters.

bvals: a named list object defining the basis values and their first derivative values.
The names are:

bvals: a Q × K matrix of values of the basis functions at the quadrature
points tq.

dbvals: a Q×K matrix of values of the first derivatives of the basis functions
at the quadrature points tq.

Some applications may require members of list bvals higher derivatives of the
basis functions at the quadrature points.

All of the above functions take the following arguments

coefs: the current estimate of the coefficients

bvals: as given in the bvals slot in proc.

pars: current parameter values

more: a named list containing additional information that may be required. In
particular, it must specify quadrature points and weights with names

qpts: a vector of length Q containing quadrature points tq where the penalty
is to be evaluated.

weights: a vector of length q containing the quadrature weights wq

Named list more may also optionally have members
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names: a list of d names for the state variables. These enable the functions
defined above to state variables in terms of their names rather than
indexes.

parnames: a list of p names for the parameters.

These rather general definitions for the proc functions imply somewhat more
effort for the user in defining them. The payoff is a very general framework that
can encompass both discrete and continuous time systems along with higher-order
and spatial systems.

CollocInfer functions make.findif.lik and make.findif.proc is provided to
either check the derivative calculations in the proc object using finite differencing,
or even to substitute for programming these derivatives entirely. The use of this
function is nearly identical to that for function make.findif.loglik, described in
Section 3.2.

However, as with lik objects, a number of pre-defined functions have been
constructed to create special proc objects. These may have different definitions for
the bvals member of the proc list, as well as for the more member.

4.3.3 SSEproc: The ordinary least squares proc object

This is the analogue of the SSElik, based on approximation to the integrated
squared error version of the roughness penalty

P =
d∑
i=1

Q∑
q=1

wq

[
dΦ
dt

(tq)ci − fi(t,Φ(tq)C,θ)
]2
.

The CollocInfer pre-specified function make.SSEproc() creates a proc named
list with functional members fn, dfdc, dfdp, d2fdc2 and df2dcdp. In addition,
member bvals needs to be defined as a named list to hold

bvals: a Q × K array giving the values of the basis functions at the quadrature
points.

dbvals: a Q ×K array giving the values of the derivatives of the basis functions
at the quadrature points.

The named list more should hold

qpts: a vector of quadrature points tj where the penalty is to be evaluated.

weights: a matrix giving the quadrature weights qij

4.3.4 Cproc and Dproc: generalized least squares proc objects

Function Cproc generalizes SSEproc to allow any log likelihood of dx/dt given x:

Pi =
Q∑
q=1

wq`

[
dΦ
dt

(tq)ci; fi(t,Φ(tq)C,θ)
]
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It can be used to take any of the likelihoods defined for lik objects and convert
them into the corresponding proc objects, provided the derivatives with respect to
y are defined in the lik object.

Function SSEproc is equivalent to calling

proc = make.Cproc()
proc$more = make.SSElik()

and defining proc$bvals and proc$more$more appropriately. However, SSEproc
creates a useful shortcut.

The Dproc functions provide similar functionality to Cproc but for discrete-time
processes with values at L equally-spaced time points. These calculate

Pi =
L−1∑
j=1

l [Φ(tj+1)ci; fi(t,Φ(ti)C,θ)] .

We often define Φ to be a sequence of constant functions with breaks in the mid-
points between the tj . This is then equivalent to estimating the discrete state of
the system.

The arguments for function Dproc are mildly different:

bvals: contains a single L × K array giving the basis values at the L evaluation
times. For a saturated basis, L = K and in this case is just the identity matrix
of order L.

more$qpts is an L− 1 vector of times.

The proc named list defined by function Dproc also requires the same members fn,
dfdx, dfdy, dfdp, d2fdx2, d2fdxdy, d2fdy2, d2fdxdp, d2fdydp, and more as are
required by function Cproc, to be held in more, which can be called by any of the
lik functions.

Note that Dproc is the same as defining

bvals$bvals = basisvals[1:(nrow(basisvals)-1),]
bvals$dbvals = basisvals[2:nrow(basisvals),]
more$qpts = more$qpts[1:(nrow(basisvals)-1)]

and using Cproc (SSEproc may also be used if more$weights is also changed to be
(Q − 1) × d). However, Dproc has been included to make the distinction between
discrete and continuous time systems.

4.4 Link functions g for indirect data–model relations

It happens often that the data we collect are only indirectly related to the process
that we define by the differential equation.

For example, experiments in the physical sciences often involve the measurement
of magnitudes such as mass, density, heat, work and so on that have a meaningful
zero and are otherwise intrinsically positive. But linear differential equations, the
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easiest ones to work with, cannot be prevented from having negative values x(t)
in their solutions. An option in this case is to fit the data with a transformation
of the value of the differential equation, and in the nonnegative case, we would
logically use g(x) = exp(x) for this purpose. Likewise, a chemist might measure the
concentration of a chemical species in the output of a chemical reactor, and record
these concentrations as percentages. In this case, an effective transformation would
be g(x) = 100 exp(x)/[1 + exp(x)].

Another example arises when the data fit provided by state x is augmented by
a contribution from a covariate z, so that g(x) = x + βz where β is a regression
coefficient that must be estimated from the data. In this event, parameter β is
included within the parameter vector θ, and the link function therefore is dependent
on the parameter vector as well as on the value of x. This, too, can be provided for
in a user-specified link function.

On the other hand, doing nothing at all to x is also an option, and the transfor-
mation g(x) = x is called the identity transformation.

Each link function must also be able to compute, in addition to g(x), the values
of various partial derivatives involving θ and y, since the fitted value of x also
depends on these quantitites. CollocInfer specifically requires the user to provide
dg/dx, d2g/dx2, ∂g/∂θ, ∂g/∂y and ∂2g/∂x∂θ.

The link function is passed to various functions through the more named list in
the lik object as a named list with members fn, dfdx, dfdp, d2fdx2, d2fdxdp. An
example of how this link named list is defined for the exponential transformation
can be found in the CollocInfer function make.exp, and function make.id sets up
the identity transformation.

At the time of writing of this manual, CollocInfer has predefined functions
make.id and make.exp for only the identity and exponential transformations, re-
spectively.

An example of the use of the identity and exponential transformations can be
found in the CollocInfer function SSEsetup, which sets up lik and proc objects
for the error sum and integral of squared residuals case, respectively. These three
statements set up the lik object and use an argument pos in the call to SSEsetup
to allow the user to switch between the identity (the default) and the exponential
transformation.

lik = make.SSElik()
if (pos==0) lik$more = make.id()
else lik$more = make.exp()

Another example of the use of link functions is in the multinorm.setup function.
CollocInfer function make.findif.ode provides finite-difference estimation of

the derivatives when they are too cumbersome, or computationally expensive, to
evaluate analytically.

CollocInfer function make.findif.ode() creates a list with slots fn, dfdx, dfdp,
d2fdx2, d2fdxdp that calculate derivatives by naive finite differencing. The element
more should contain

fn: the function whose derivatives are to be approximated by differencing.
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eps: the time interval δt to be used in the differencing.

more: any further objects to be passed to link function.

4.4.1 genlin

These functions calculate

f(t,x, p) = A(p)x(t) +B(p)u(t)

a generic linear combination of the states, plus a linear combination of de known
external inputs u. This is useful, for example, when the measurement is of some
proportion of a state or for linear dynamics.

make.genlin() creates a list with slots fn, dfdx, dfdp, d2fdx2, d2fdxdp. In
addition, the element more can specify a flexible structure for A. more is a list with
slots

mat a d × d matrix for A(0) with constant entries not affected by the parameters.
Defaults to zero if not specified.

sub: a p′ × 3 array giving in order the row position, column position and index
of parameters to be used in A; a row with elements (i, j, k) specifies that
Aij = pk.

Defaults to filling in all entries of A in row-order starting with the first element
of p.

force: a list of length de containing either functional data objects, or functions to
evaluate u(t). Defaults to NULL.

force.mat: a matrix for B(0); defaults to identity if force is not NULL.

force.sub: as in sub for B(p). Defaults are

• if NULL continue to fill in B(p) in row order, starting from d2 + 1.

• if a vector, the ith position having value j specifies Bij = pd+i.

• if a matrix, the ith row being (j, k) specifies Bij = pk.

4.5 Variance functions for defining generalized least squares
fits

The multinorm functions also require a variance function to be calculated. Some-
times, the variance may itself be state-dependent (see, for example, the SEIR equa-
tions below), but it will also frequently be treated as constant

V (t,x, p) = V (p).

CollocInfer function make.cvar() creates a list with slots var.fn, var.dfdx,
var.dfdp, var.d2fdx2, var.d2fdxdp defining constant variance parameters. These
require more to be a list containing
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mat: the matrix for V (0). Defaults to zero if more$sub is defined, or identity
otherwise

sub: as in the matrices for A and B in genlin. This should be a p × 3 array. A
row containing (i, j, k) implies Vij = Vji = pk.

CollocInfer function make.findif.var provides finite difference estimation for
the variance function when it is too expensive or intractable to evaluate analytically.

CollocInfer function make.findif.var() creates a list with elements fn, dfdx,
dfdp, d2fdx2, d2fdxdp. The element more should contain

fn: the function to be differenced.

eps: the time step for finite differencing.

more: any further objects to be passed to fn.
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5 Confidence intervals for estimates of parameters
in θ

Ramsay et al. (2007) suggests confidence intervals based on standard non-linear least
squares methods. The approximate covariance matrix for the parameter estimates
may be given by

Cov(θ̂) ≈ σ̂
[
JTJ

]−1

(10)

where J is an n×p matrix containing the partial derivatives of the predicted values
with respect to the parameters. In the case of the methods described above, this
amounts to

J = Φ(t)
d

dθ
C(θ).

But estimate (10) may be too optimistic for two reasons:

1. For stochastic systems, the estimate accounts only for the variance resulting
from observational noise; it does not account for process noise.

2. Covariance estimate (10) is based upon the assumption that the rows of J
are independently sampled at the true parameters. For λ small, this is not
tenable, since the estimates for C(θ) uses all the observations.

Instead, we combine Newey-West and sandwich estimators to provide approximate
covariance matrices. Modifying the usual MLE asymptotics, we write

(θ̂ − θ) = V−1J1.

Here 1 is a column of 1’s providing a summation operation. V is the second deriva-
tive of the expected objective function at θ and we take J to be the derivative of
the objective function. Note that in contrast to J above, J may combine multiple
measurements taken at the same time points.

In the squared-error case, we can obtain a consistent estimate for V from

V ≈ JTJ.

Assuming a central limit theorem for J we can obtain a covariance estimate for θ̂
from the sandwich estimator:

Cov(θ̂) ≈ V−1Cov(J1)V−1.

If the rows of J are independent the covariance on the right hand side is V, yielding
the usual inverse Hessian. When this is not the case, we can instead employ a
Newey-West estimate (Newey and West, 1987):

Cov(J1) ≈ Ω̂0 +
m∑
k=1

(
1− k

m+ 1

)(
Ω̂k + Ω̂Tk

)
, Ω̂k =

1
n

n∑
t=k+1

Jt−kJTt

Under mild mixing assumptions, this estimate is consistent when m = op(n1/4).
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This estimate effectively included successively down-weighted estimates of the
covariance at distance k between the rows of J. The particular formulation ensures
the positive semi-definiteness of the estimator. The implication that the rows of J
are only locally covariant appears reasonable; dependence among the rows stems
from the estimation of C(θ) (at a given θ) which will themselves be only locally
dependent.

However, it should be noted that this approximation is based on the score being
a sum of (marginally) identically distributed variables. This is reasonable only
when the observations are taken at equi-spaced intervals and the same components
are always measured. When the measurements are not equi-spaced, or different
components are measured at different times, similar approximations may be made,
but these will be complicated and must be tailored to the specific situation.
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6 Optimizing functions and the functions they call

The generalized profiling method works by optimizing two sets of parameters: the
coefficients ci, i = 1, . . . , d defining the estimated state variables xi, and the pa-
rameters contained in the parameter vector θ. This optimization proceeds in two
steps.

In the inner step, the coefficients are estimated holding θ fixed by optimizing
criterion J defined in (5) and (7). The main function for doing this in CollocInfer
is function inneropt.

In the outer step, criterion H defined in (6) is optimized with respect to the
parameters in θ, taking account of the fact that the coefficients in C(θ) are implicitly
functions of θ. The main function for doing this in CollocInfer is function outeropt.

R has many functions and packages of functions dedicated to the numerical
optimization of functions, and the CollocInfer packages permits the user to choose
from a wide number of these within both function inneropt and function outeropt.
Why?

The collocation process can generate challenging optimization problems for two
reasons. First, there are typically a large number of coefficients in C, so that
the inner optimization can be a high-dimensional, and if poor starting values are
supplied, the optimization may either fail or taken an unacceptable length of time to
find an optimum, depending in part on the strategy used by the optimizing function.
Some methods work better than other for high dimensional problems, and the user
may find it necessary to experiment with a few before deciding which to use.

The R optimization methods made available are

• nlminb

• optim

• maxNR

• trust

• SplineEst.NewtRaph (a method developed specially for CollocInfer)

Each estimation problem is unique, and some of these functions are still being im-
proved by their original designers, so that we do not wish to indicate any preference
among these, although Cao and Ramsay (2009) do suggest that the performance of
nlminb was decidedly inferior to that of optim in study of the linear mixed effects
model, which has some similarities to the collocation problem. Further details and
information about each optimization function can be obtained by consulting the
help pages for the function, such as help("optim").

In the outer optimization of H, the number parameters in θ is typically much
smaller, but the fact that the value of H depends both explicitly and implicitly
on θ (through C(θ)) can mean that the surface defined by H can have complex
topographical features, including multiple local optima, that can make even low-
dimensional optimization challenging. Again, the possibility of choosing among
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several optimizing strategies can be important, and is for that reasons supplied to
the user in the two functions.

CollocInfer allows for the possibility that only a subset of parameters in θ are
to be optimized, with the remainder being held fixed.

These two factors imply that beginning the optimization with good initial values
for both C and θ can make the difference between success and failure. Consequently,
CollocInfer also offers a number of functions dedicated to the preliminary estimation
of starting values, especially for C, from the data.

Both functions inneropt and outeropt actually do little except select among
optimization functions and set up the results of the optimization for output. How-
ever, each optimization function has its own peculiarities, and therefore a variety of
lower-level functions are provided by CollocInfer to be called by various optimizing
functions, and will be described below after we have indicated the arguments that
can be provided to inneropt and outeropt.

6.1 Inner optimization of J to estimate coefficients: inneropt

Function inneropt optimizes the inner optimization criterion J defined in (5) by
selecting among a number of optimization functions available in R.

The arguments are

data: A matrix (unreplicated data) or array (replicated data) of observed data
values.

times: A vector of n observation times for the data.

pars: A vector of p current values of the parameters in θ to be estimated.

coefs: A matrix or array containing the initial estimates of the coefficients in C.

lik: the lik object (a named list) defining the observation process.

proc: the proc object (a named list) defining the state process.

in.meth: a string designating the nner optimization function: currently one of
‘nlminb’, ‘maxNR’, ‘optim’ (uses the ‘BFGS’ option), ‘trust’ or ‘SplineEst’.
The last calls SplineEst.NewtRaph. This is fast but has poor convergence.

control.in: A control object that controls the inner optimization function.

Argument control.in should contain whatever control parameters are appropriate
for the optimization routine being called. When these are given as separate argu-
ments in the optimization function call (as in maxNR), they should be listed in
control.in and are then unpacked. Leaving control.in=NULL results in default
values which are not always effective. If in.meth=NULL it defaults to ‘nlminb’.

Function inneropt returns a named list with members

coefs: The matrix C containing the coefficients of the fit for all states.
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res: The result of the optimization, typically a list object. This is specific to the
optimization routine used, and the help page for the optimization function
must be consulted for details on what it contains.

Depending on which optimization routine is invoked, the following functions are
called by the optimizing function:

SplineCoefsErr: Computes the estimated state function values x(t).

SplineCoefsDC: Computes the derivative of x(t) with respect to the coefficients of
the basis expansion.

SplineCoefsDP: Computes the derivative of SplineCoefsErr with respect to the
parameters in the system. May be used as an alternative to ParsMatchErr
and ParsMatchDP.

SplineCoefsDC2: Computes the Hessian of SplineCoefsErr with respect to the
coefficients of the basis expansion.

SplineMaxLik: Computes function returning the output of SplineCoefsErr with
the output of SplineCoefsDC and SplineCoefsDC2 as a named list with mem-
ber names gradient and hessian, respectively.

Each of these lower level functions takes arguments

coefs: the current value of the coefficients as a vector of length dK (coefficient
nested within variables) or a K × d matrix

times: the observation times given as a n-vector

data: the observed data given as an n×d matrix (unreplicated) or as an n×N ×d
array (replicated)

lik: the lik named list object for the data fitting term

proc: the proc named list object for the roughness penalty term

pars: a vector containing the p parameters in θ

sgn: a scalar variable taking values +1 or -1 indicating if the objective function
should be maximized (-1) or minimized (+1). Defaults to +1.

6.2 Outer optimization H to estimate parameters: outeropt

Function outeropt optimizes criterion H defined in (6) with respect to the param-
eters in θ; and, like function inneropt, it essentially selects among R optimization
functions. In the special case of squared error models (5), nonlinear least squares
optimization can be more efficient and more convenient. Functions Profile.LS
uses this strategy, along with function Profile.GausNewt, and these are described
in Section 6.4 below.

Function outeropt is called with these arguments:
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data: A matrix (unreplicated data) or array (replicated data) of observed data
values.

times: A vector of n observation times for the data.

pars: A vector of p current values of the parameters in θ to be estimated.

coefs: A matrix or array containing the initial estimates of the coefficients in C.

lik: the lik object (a named list) defining the observation process.

proc: the proc object (a named list) defining the state process.

in.meth: a string designating the nner optimization function: currently one of
‘nlminb’, ‘maxNR’, ‘optim’ (uses the ‘BFGS’ option), ‘trust’ or ‘SplineEst’.
The last calls SplineEst.NewtRaph. This function is faster if started with
parameter values close to the optimal values, but may not find the global
optimum as reliably without good initial values.

out.meth: Outer optimization function to be used, one of ‘optim’ (uses the ‘BFGS’
methods), ‘nlminb’, ‘maxNR’, ‘trust’ or ‘subplex’. When squared error is
being used, ’ProfileGN’ and ’nls’ can also be given. The former of these calls
Profile.GausNewt.

control.in: A control object that controls the inner optimization function.

control.out: A control object for outer optimization function.

active: A vector containing indices indicating which parameters of pars should be
estimated; it defaults to all of them.

Both control.out and control.in should give control parameters corresponding
to the optimization routine being used. When there are multiple arguments used in
calling those routines, they should be listed in the control variable. Both methods
default to ‘nlminb’ and both control variables default to NULL in which case defaults
from each of the methods are used.

The function returns a list with the following entries

pars: A vector of length p containing the optimal parameter values.

coefs: A K × d matrix or array K × N × d array containing optimal coefficients
at pars.

res: The result of the outer optimization that are specific to the optimizing function
selected.

The optimization functions call lower level functions ProfileErr and ProfileDP.
These functions provide, respectively, the value of the profile objective function and
its derivatives with respect to parameters. They are intended as inputs into generic
optimization routines and have arguments
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pars: The vector of current parameter estimate values. It’s length is determined
by vector active and is the number of parameters being actually optimized,
as opposed to the total number of parameters.

times: An n-vector of times

data: The n× d data matrix (unreplicated) or n×N × d data array (replicated).

coefs: The starting estimates for the coefficients

lik: lik object for the data process

proc: proc object for the state process

in.meth: An indicator of which optimization method to use for the inner criterion.
See options in inneropt.

control.in: Control parameters for optimizing coefficients.

sgn: Is the criterion to be maximized (1) or minimized (-1). Defaults to 1.

active: The indexes, or names if specified, of parameters to be estimated. Defaults
to estimating all of them.

allpars: A list containing names of all parameters in the system, including those
not being estimated; this should be a superset of pars.

sumlik: (ProfileDP only): the summation of the profile score vector be returned?
Defaults to TRUE. FALSE can be used to generate a Newey-West estimate for
the variance.

Function ProfileErr will create and read temporary files

• curcoefs.tmp,

• optcoefs.tmp and

• counter.tmp.

These are created and removed in the outeropt, Profile.LS and profile.multinorm
functions. However, if you optimize ProfileErr directly, the files will not be re-
moved. Trying to run ProfileErr with these files existing from previous experi-
ments can result in errors and you should make sure to remove them before doing
so.

CollocInfer function Spline.NewtRaph is a Newton-Raphson minimization rou-
tine to estimate the coefficients of the basis expansion for any given set of param-
eters. This mimics the functionality in Hooker (2006). It requires the following
arguments

coefs: The matrix or array of coefficient values to be estimated

times: An n-vector of times
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data: The data matrix or data array

lik: lik object for the data process

proc: proc object for the state process

pars: The current parameter estimates

control: Control parameters for optimizing coefficients with for each value of the
parameters. These are

reltol: The relative change in error at which to stop. This also represents
the relative gradient change at which to Stop. Defaults to 10−12

maxi: Maximum number of iterations, default is 1000.
maxtry: The maximum number of times to half the current step before de-

ciding the objective criterion cannot be decreased. Defaults to 10.
trace: Progress to report. 0 means none. 1 is on termination, 2 is by itera-

tion.

The function returns a named list with members

coefs: the optimal coefficients

g: the gradient of the objective with respect to the coefficients

value: the value of the objective function

H: the Hessian of the objective function with respect to the coefficients

6.3 Function for confidence intervals: Profile.covariance

This function calculates a covariance estimate for the parameters, based on the
Newey-West estimate outlined in Section 5. Its arguments are

pars: The estimated parameters

active: An index, or list of names, of the parameter to be estimated. Defaults to
NULL in which case all are estimated.

times: Observation times.

data: The observed data.

coefs: The coefficients corresponding to the estimated parameters.

lik: The lik object used in the estimation.

proc: The proc object used in the estimation.

in.meth: The inner-optimization method to use, this is the same argument as in
ProfileErr.

control.in: Control parameters for the inner optimization.

eps: The finite-difference discretization parameter, defaults to 1e-6.
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6.4 A special purpose optimizer for least squares: Profile.GausNewt

This function is most commonly called through Profile.LS. Profile.GausNewt
provides a Gauss-Newton method for minimizing (6) when the likelihood is de-
scribed by squared error. It mimics its namesake in Hooker (2006). It requires

pars: The current parameter estimates

times: A n-vector of times

data: The n× d data matrix

coefs: The starting estimates for the coefficients

lik: lik object for the Markov process

proc: proc object for the Markov process

in.meth: An indicator of which optimization method to use for the inner criterion.
See inneropt

control.in: Control parameters for optimizing coefficients with for each value of
the parameters.

active: The indexes, or names if specified, of parameters to be estimated. Defaults
to estimating all of them.

control: Control parameters for optimizing coefficients with for each value of the
parameters. These are

reltol: The relative change in error at which to stop. This also represents
the relative gradient change at which to Stop. Defaults to 10−12

maxit: Maximum number of iterations, default is 1000.

maxtry: The maximum number of times to half the current step before de-
ciding the objective criterion cannot be decreased. Defaults to 10.

trace: Progress to report. 0 means none. 1 is on termination, 2 is by itera-
tion. Default is 0

This function returns a list with the following elements:

pars: The optimized parameter values (the full parameter vector rather than just
the active parameters).

in.res: The result of the most recent inner optimization.

value: The squared error out objective criterion.
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6.5 Gradients and Hessians for least squares: ProfileSSE

CollocInfer function ProfileSSE assumes that the data fitting term evaluated by ob-
ject lik and the roughness penalty term evaluated by object proc are total squared
error. The function calculates the necessary gradients and objective functions for
either of these. It takes arguments:

pars: The current parameter estimates

allpars: A list of all parameters in the system, including those not being estimated;
this should be a superset of pars.

times: An n-vector of times

data: The n× d data matrix

coefs: The starting estimates for the coefficients

lik: lik object for the process

proc: proc object for the process

in.meth: An indicator of which optimization method to use for the inner criterion.
These are ’BFGS’ for ’optim’ with the BFGS method, ’nlminb’ for nlminb,
’maxNR’ for maxNR in the maxLik package and ’house’ for Spline.NewtRaph.

control.in: Control parameters for optimizing coefficients with for each value of
the parameters. Where control parameters are passed in as arguments to a
function, as in maxNR, these should be named as members of the control.in
list.

active: The indexes, or names if specified, of parameters to be estimated. Defaults
to estimating all of them.

dcdp: the derivative of the coefficients with respect to the parameters. Defaults to
NULL and is largely used in Profile.GausNewt to speed up the inner opti-
mization.

oldpars: parameters from the previous iteration, defaults to NULL and is largely
used in Profile.GausNewt to speed up the inner optimization.

use.nls: Defaults to TRUE, requires the same ProfileEnv environment to be de-
fined as for ProfileErr and formats output for nls.

sgn: Is the criterion to be maximized (1) or minimized (-1). Defaults to 1.

Function output depends on use.nls. If TRUE it outputs a vector of errors with
an attribute variable giving the gradient of the errors with respect to parameters.
If FALSE it outputs a list with elements

f: A vector of errors for the observations to be used in a squared error criterion.
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df: A matrix the rows of which give the derivative of each entry in f with respect
to the parameters.

coefs: The optimal coefficients for the current parameters

dcdp: The derivative of the coefficients with respect to the current parameters.

ProfileSSE creates (and reads) the same temporary files as ProfileErr. The same
warning about removing these temporary files applies.

6.6 Computing starting coefficient values: FitMatchOpt

The primary application of function FitMatchOpt is to provide starting coefficient
estimates for state variables for which no observations are available. The function
FitMatchOpt provides facilities to compute estimates of some state variables xi in
a process, given previous estimates of others and parameter values. Thus if in a
three-variable system x1 and x2 have been observed and and their data smoothed,
but x3 has not been observed, this function will estimate coefficients for x3(t).

FitMatchOpt estimates unobserved states by minimizing only the second rough-
ness penalty term in (7), that is,

d∑
i=1

λi

∫
P

[
d

dt
ciΦ(t), fi(t,Φ(t)C,θ)

]
dt

with respect to the coefficients in C corresponding to unobserved variables, holding
fixed the parameter values in θ. It must, therefore, be supplied with a proc object
that defines the roughness penalty, as well as parameter values and coefficients for
the observed state variable estimates.

Function FitMatchOpt has arguments:

coefs: A matrix or array containing the current estimate of the coefficients for the
hidden states.

which: A vector containing indices of states to be estimated.

pars: A vector containing parameters to be used for the processes.

proc: The proc object defining the roughness penalty.

meth: An optional name of an R optimization function, currently one of ’nlminb’,
’MaxNR’, ’optim’ or ’trust’.

control:] An optional control object for optimization function.

control and meth work exactly as the counterparts in inneropt.
Function FitMatchOpt returns a named list with members:

coefs: A matrix or array containing the estimated coefficients for the hidden states.

res: A list containing summaries of the optimization that are returned by the specific
optimization function that was used.
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We can illustrate the use of FitMatchOpt for the FitzHugh-Nagumo equations,
using the code in Section 3, by estimating coefficients for variable R on the basis
of observations on only V . Let us assume that the second column in the data
matrix FHN.data contains all NA’s, indicating that the recovery variable R has not
been observed. In this code we set up a new coefficient array with the first column
containing coefficients for variable V estimated by smoothing only this variable,
and with the second column zeros, our initial coefficient values for the optimization
process.

FHN.Vfd = smooth.basis(times, FHN.data[,1] FHN.basis)$fd
FHN.Vcoefs = FHN.Vfd$coefs
FHN.VRcoefs = cbind(FHN.Vcoefs,matrix(0,FHN.nbasis,1))

Here is code for defining the lik and proc objects for the FitzHugh-Nagumo equations
for the least squares case using function SSEproc described in Section 4.3.3.

FHN.proc= make.SSEproc()

Now the optimization is carried out using an initial guess at parameter values in
vector FHN.pars0, and we then extract the estimated coefficients for variable R.

res = FitMatchOpt(FHN.VRcoefs,which=2,FHN.pars0,FHN.proc)
FHN.VRcoefs[,2] = res$coefs

At this point, we are now ready to proceed to the use of functions inneropt and
outeropt, as described in Section 6.

It should not be missed that the use of FitMatchOpt does require that we have
a reasonable set of initial values for the parameter vector θ, supplied in argument
pars in this code. See function ParsMatchOpt for a method for estimating these
initial parameter values if one is in the happy situation of having observations for
all the state variables. Unfortunately, there is no easy way to get good initial
estimates of both C and θ at the same time. Whether one should first turn to using
FitMatchOpt and then ParsMatchOpt, or vice versa, will depend on the complexity
of the differential equation and the nature of the data that one has available.

As was the case for the smoothing problem, the optimization that takes place in
FitMatchOpt relies on functions to define the objective and derivatives: FitMatchErr
returns an objective function value calculated as the value of proc while FitMatchDC
returns the derivative and FitMatchDC2 returns the Hessian with respect to the
components that are being estimated. They all take arguments:

coefs: The estimated coefficients for the components being estimated.

allcoefs: The K × d matrix or K × N × d array of coefficients. This is used to
extract the coefficients for the components that are held fixed. The coefficients
for the components being estimated are ignored.

which: A vector giving the indexes of the components being estimated.

pars: The parameters to be used in the system.
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proc: The proc object for the system in question.

sgn: a variable taking values +1 or -1 indicating if the objective function should be
maximized (-1) or minimized (+1). Defaults to +1.

6.7 Estimating parameters given x: ParsMatchOpt

Function ParsMatchOpt minimizes only the second roughness penalty term in (7),
that is,

d∑
i=1

λi

∫
P

[
d

dt
ciΦ(t), fi(t,Φ(t)C,θ)

]
dt

with respect to the parameters in θ for a fixed set of coefficients in C. This is the
“gradient matching” problem that is also treated by principal differential analysis
in Ramsay and Silverman (2005). When the all the state variables are observed, so
that C can be estimated by direct smoothing, this function can be used to provide
useful initial values θ̂ for the parameters.

ParsMatchOpt requires arguments:

pars: A vector of initial values of parameters in θ to be estimated.

coefs: A matrix or array containing the current coefficient estimates defining the
state variables.

proc: A proc object defining the fit of state processes to the differential equation.

active: A vector of indices indicating which parameters of allpar should be esti-
mated; defaults to all of them.

allpars: A vector containing all of the parameters, the assignment allpar[active]=pars
is made initially.

sgn: Is the minimizing (1) or maximizing (0)?

meth: The optimization function: currently one of ’nlminb’, ’MaxNR’, ’BFGS’ or
’trust’.

control: Control object for optimization function.

ParsMatchOpt returns a list with elements

pars: The optimized parameter values.

res: The output of the optimization routine.

For the FitzHugh-Nagumo equations, assuming that we have a full coefficient
matrix FHN.VRcoefs containing coefficients for both the V and R state variables,
we can estimate parameter values with the code

res = ParsMatchOpt(pars=pars,coefs=FHN.VRcoefs,FHN.proc)
FHN.pars = res$pars
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As above in the illustration of the use of FitMatchOpt, we can now proceed to the
final optimization phase with these parameter estimates.

The optimization routines refer to functions ParsMatchErr and ParsMatchDP.
These provide the value and gradient for a fixed set of coefficients. They require

pars: The current estimates of the parameters

coefs: the coefficients (held fixed)

proc: the proc object for the state process

active: The indexes, or names if specified, of parameters to be estimated. Defaults
to estimating all of them.

allpars: A list of all parameters in the system, including those not being estimated;
this should be a superset of pars.

sgn: a variable taking values +1 or -1 indicating if the objective function should be
maximized (-1) or minimized (+1). Defaults to +1.
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7 More functions for least squares estimation

Ramsay et al. (2007) describe estimation methods for direct measurements of a
system using squared error for both lik and proc. In particular, Hooker (2006)
describes software that interfaces with the Matlab fda package. These functions
provide equivalent functionality for the fda library in R . There are equivalent
functions for multivariate normal distributions.

Due to the interface with the fda library, some standard conventions are changed
when repeated time-series observations are given. We assume that the dimensions
of observations (and consequently of co-efficients) describe

1. time points

2. replicates

3. variables

that is, replicated time series are included as the second dimension. This fits the
formalism of the fda library. Note that in order to use these functions, all replicates
must have the same observation times and use the same collocation basis. If this
is not the case, they can be incorporated manually, as described above. If the data
are given as a matrix, it is assumed that only one replicate is present.

7.1 Setting up lik and proc objects: LS.setup

This function calculates and returns lik and proc objects given some inputs, pos-
sibly including a functional data object. A fair amount of argument parsing is done
here, so you should read the way various arguments are handled carefully.

pars: A set of starting parameters, should be named.

coefs: An initial set of co-efficients. If there are replicates, this should be a three
dimensional array with the second dimension giving replicates, and the third
indexing state vectors. If a two-dimensional array is given, it is assumed that
there is only one replicate. The dimnames attribute of coefs should give the
state names as they are referred to in the right hand side of the differential
equation. coefs defaults to NULL, in which case these are taken from fd.obj.

fn: One of

• A list of functions as specified in proc$more for SSEproc.

• A single function giving the right hand side of the differential equation.
In this case, a finite difference routine is used to estimate derivatives of
the right hand side numerically.

basisvals: One of

• A B-spline basis object (see the fda library) giving the collocation basis.

• A list with elements
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bvals.obs: the basis evaluated at the observation times
bvals: the basis evaluated at collocation points
dbvals: the derivative of the basis evaluated at collocation points
qpts: a vector giving quadrature points
qwts: a vector of quadrature weights. If this is not specified, they are

all set to 1.

• NULL (default) in which case the basis is taken from fd.object.

• A matrix of values – for discrete-time systems only; defaults to an iden-
tity matrix of dimension the number of observations if discrete and
basisvals is left as null.

lambda: A vector of λ’s, one for each state variable. If given as a singleton, it is
expanded so that all the λi are the same.

fd.obj: A functional data object giving a smooth for the system. If this is present,
it over-rides coefs and basisvals replacing them with fd.obj$coefs and
fd.obj$basis. State variables are taken from the fd.obj$fdnames.

more: Additional inputs into fn as would noramlly be given.

weights: A matrix of observation weights. Defaults to NULL in which case these
are assumed to be all 1.

times: A matrix of observation times. Defaults to NULL. If fd.obj is given, or if
basisvals is a basis object, this must be specified.

quadrature: If basisvals is a basis object or fd.obj is present, otherwise ignored.
A list giving the quadrature scheme. In particular it should provide

qpts: a vector giving quadrature points

qwts: a vector of quadrature weights. If this is not specified, they are all set
to 1.

If NULL (default) qpts is set to be midpoints between knots and qwts is set
to be all ones.

eps: Size of h for finite difference approximations. Defaults to 1e-6.

posproc: Is the system always positive? In this case, x(t) is represented by an
exponentiated basis expansion exp(Φ(t)C). It uses make.logtrans in the
proc object; see Section 8.

poslik: Should the trajectory be exponentiated before being compared to the data?
If this is set to 1, we use make.exp in the lik object.

discrete: Is the system discrete-time? In this case the definitions of basisvals
are changed to assume a difference equation.
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Note that state and parameter names, if used in fn, are taken from pars and
coefs (or fd.obj$fdnames) and are otherwise assumed to be NULL.

The function returns a list with elements

lik: A lik object using SSElik().

proc: A proc object using SSEproc() and fn specifying the right hand side of a
differential equation.

coefs: The coefficients, which are extracted from fd.obj if given, and re-formatted
into a matrix.

7.2 Smoothing the data given parameters: Smooth.LS

This function creates lik and proc objects using LS.setup and runs the inner
optimization. It requires the following inputs:

fn: As in LS.setup

data: A data array. This should be three dimensional if there are replicated time
series, with the second dimension indicating the replicate number. If given as
an array, one replicate is assumed.

times: A matrix of observation times.

pars: Initial parameters, should be named if names are used as indices in fn.

coefs: As in LS.setup.

basisvals: As in LS.setup.

lambda: As in LS.setup.

fd.obj: As in LS.setup.

more: Additional inputs into fn as would noramlly be given.

weights: As in LS.setup.

in.meth: As in ProfileSSE.

control.in: As in ProfileSSE.

quadrature: As in LS.setup.

eps: Size of h for finite difference approximations. Defaults to 1e-6.

posproc: Is the system always positive? In this case, x(t) is represented by an
exponentiated basis expansion exp(Φ(t)C). It uses make.logtrans in the
proc object; see Section 8.

poslik: Should the trajectory be exponentiated before being compared to the data?
If this is set to 1, we use make.exp in the lik object.
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discrete: Is the system discrete-time? In this case the definitions of basisvals
are changed to assume a difference equation.

After smoothing using the optimization routine given in in.meth, returns a list
with elements

lik: A lik object using SSElik().

proc: A proc object using SSEproc() and fn specifying the right hand side of a
differential equation.

coefs: The optimized coefficients, given in the same format as the input. If fd.obj
is input, this is omitted and an element fd is returned containing a functional
data object using the optimized coefficients.

7.3 Least squares generalized profiling: Profile.LS

This function carries out the full profile estimate of parameters, given similar inputs
as above. In particular, it requires

fn: As in LS.setup

data: A data array. This should be three dimensional if there are replicated time
series, with the second dimension indicating the replicate number. If given as
an array, one replicate is assumed.

times: A matrix of observation times.

pars: Initial parameters, should be named if names are used as indices in fn.

coefs: As in LS.setup.

basisvals: As in LS.setup.

lambda: As in LS.setup.

fd.obj: As in LS.setup.

more: Additional inputs into fn as would noramlly be given.

weights: As in LS.setup.

in.meth: As in ProfileSSE.

out.meth: An optimization routine for the outer optimisation. This can be either
’house’ in which case Profile.GausNewt is called, or ’nls’ in which case
nls is used.

control.in: As in ProfileSSE.

control.out: A control list for the outer optimization. See Profile.GausNewt or
nls for details.
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quadrature: As in LS.setup.

eps: Size of ε for finite difference approximations. Defaults to 1e-6.

posproc: Is the system always positive? In this case, x(t) is represented by an
exponentiated basis expansion exp(Φ(t)C). It uses make.logtrans in the
proc object; see Section 8.

poslik: Should the trajectory be exponentiated before being compared to the data?
If this is set to 1, we use make.exp in the lik object.

discrete: Is the system discrete-time? In this case the definitions of basisvals
are changed to assume a difference equation.

The function returns:

pars: The optimized parameters

res: The object returned from the outer optimization (see Profile.GausNewt or
nls as appropriate).

lik: A lik object using SSElik().

proc: A proc object using SSEproc() and fn specifying the right hand side of a
differential equation.

coefs: The optimized coefficients, given in the same format as the input. If fd.obj
is input, this is omitted and an element fd is returned containing a functional
data object using the optimized coefficients.

Equivalent functions to those above are given by functions multinorm.setup,
Smooth.multinorm and Profile.multinorm. These have exactly the same argu-
ments as their sse counterparts with the single exception that lambda is replaced
by var.

Currently, var should be a 2-vector specifying the observation variance and the
process variance. However, further options are being planned.
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8 Positive State Vectors

In many systems the state vector is known to be positive: there is no such thing, for
example, as a population of -50,000 fish. Enforcing this condition can be problem-
atic for basis-expansion systems. Instead, it is often useful to represent the state
on the log scale. In the case of deterministic ordinary differential equations, the
relationship

d

dt
x(t) = f(x, θ)⇔ d

dt
z(t) = e−z(t)f(ez(t), θ) (11)

holds for z(t) = log x(t) and can improve the conditioning of an ODE. More gener-
ally, representing x(t) = exp{Φ(t)C} ensures that the state vector remains positive.
The functions below provide methods of defining lik and proc objects and their
derivatives using exponentiated basis expansions.

8.1 Utility Functions

All the functions below supplant lik, proc or other objects that are then passed
into the corresponding more slot. These all assume that the state is represented on
the log scale but that the dynamics has not been so transformed.

8.1.1 logstate.lik

Changes a lik object to use the exponential of the basis expansion as the state.
make.logstate.lik() creates a lik object with entries logstate.lik.fun,
logstate.lik.dfdx, logstate.lik.dfdp, logstate.lik.d2fdx2, logstate.lik.d2fdxdp,
more. Here more should be the lik object that is desired to be used with the ex-
ponential of the estimated state.

8.1.2 exp.Cproc

make.exp.Cproc creates a proc object that uses an exponentiated state, treating
it as a continuous time process as in Cproc. more should contain the same elements
as are needed for Cproc.

8.1.3 exp.Dproc

make.exp.Dproc() creates a proc object for the exponentiated state, treating it as
a discrete time process as in Dproc. more should be the same as would be used with
Dproc.

8.1.4 logtrans.ode

Transforms the right hand side of an ordinary differential equation (and its deriva-
tives) to the right hand side of the log state via the transformation above. make.logstrans.ode()
creates a list that can be used as the fn objects in SSEproc for example. more$fn
is required to be the right hand side function that is appropriate for the un-logged
state.
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9 Estimation for the FitzHugh-Nagumo system

The FitzHugh-Nagumo equations provided a test-bed for the original Matlab pack-
age described in Hooker (2006). They are given by a two-variable differential equa-
tion:

d

dt
V = c(V − V 3/3 +R)

d

dt
R = (V − a+ bR)/c.

These equations are intended to capture the essential dynamic properties neural
firing behavior and may be regarded as a simplification of the Hodgkin-Huxley
equations. Intuitively, V represents the voltage across the membrane of a neu-
ron, and R is a sum of “recovery” ion currents. The problem will be to estimate
parameters a, b and c.

We first illustrate the use of CollocInfer for this system with data from a single
replication, and then show its use for replicated observations.

9.1 Unreplicated Data

First we need to create some data. Vector time contains 41 equally spaced ob-
servation times spanning 0 to 20 time units. Vector pars contains the true values
for parameters a, b and c in the equation, and also letters used as labels for the
parameter values. Vector x0 defines the initial values at time 0 of the two variables
in the system, and also two letters labeling the variables.

times = seq(0,20,0.5)
pars = c(0.2,0.2,3)
names(pars) = c(’a’,’b’,’c’)
x0 = c(-1,1)
names(x0) = c(’V’,’R’)

The function make.fhn(), contained in the CollocInfer package, sets up the
named list fhn for the right side of the equation. This list in turn contains the
functions that evaluate the right side and four of its partial derivatives. We need
list fhn at this point because one of these functions, fhn$fn.ode, is used by the
differential equation approximating function lsoda that we will use to approximate
the population or true values of the differential equation solution at the times in
times.

fhn = make.fhn()

Now we can generate some noisy observations by first computing the errorless
values (well, only with the tiny errors that lsoda inevitably produces), and then
add some normally distributed random noise with standard deviation 0.05.

y = lsoda(x0,times,fhn$fn.ode,pars)
y = y[,2:3]
data = y + 0.05*array(rnorm(82),2)

47



Alternatively, the object FhHdata in the package contains data produced by a
stochastic version of the FitzHugh-Nagumo equations, making a useful test case
for an inexact differential equation.

We now define basis functions for representing the state functions V and R:

knots = seq(0,20,0.2)
norder = 3
nbasis = length(knots) + norder - 2
range = c(0,20)
bbasis = create.bspline.basis(range=range, nbasis=nbasis, norder=norder,

breaks=knots)

Initial values for coefficients will be obtained by smoothing the noisy data

fd.data = array(data,c(nrow(data),1,ncol(data)))
DEfd = data2fd(fd.data, times, bbasis,

fdnames=list(NULL,NULL,varnames) )
coefs = DEfd$coefs[,1,]
colnames(coefs) = varnames

We also need some lists containing values that control various optimization func-
tions.

control=list()
control$trace = 0
control$maxit = 1000
control$maxtry = 10
control$reltol = 1e-6
control$meth = "BFGS"

control.in = control
control.in$reltol = 1e-12
control.in$print.level = 0
control.in$iterlim = 1000

control.out = control
control.out$trace = 2

In order to perform profiled estimation using error sum of squares measures, we
can call function Profile.LS, which automatically takes care of setting up the lik
and proc objects for us.

lambda = c(10000,10000)
res0 = Profile.LS(fhn,data,times,pars,coefs=coefs,basisvals=bbasis,

lambda=lambda,in.meth=’nlminb’,out.meth=’ProfleGN’,
control.in=control.in,control.out=control.out)

It’s real easy to make mistakes in setting up the functions such as those in the
named list fhn, and especially for the functions that calculate partial derivatives.
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In the early stages of an analysis, where computational speed and accuracy may
be secondary considerations, the use of finite differences to compute these partial
derivatives may be very handy. Here we illustrate the same analysis using finite
differences. This is activated by replacing the named list fhn as argument by a
reference to only the right side evaluation function fn.

res1 = Profile.LS(fhn$fn, data, times, pars=spars, coefs=coefs,
lambda=lambda, in.meth=’nlminb’, out.meth=’nls’,
control.in=control.in, control.out=control.out)

A more sophisticated choice of fitting criterion involves assuming that the noisy
data arise from a multivariate normal distribution. Function Profile.mulinorm()
implements this.

res2 = Profile.multinorm(fhn, data, times, pars=spars, coefs=coefs,
basisvals=bbasis, var=var,
in.meth=’nlminb’, out.meth=’nlminb’)

But if we want to work with lik and proc objects, we can call function LS.setup
to these up explicitly.

profile.obj = LS.setup(pars=pars, fn=fhn, basisvals=bbasis,
lambda=10000, times=times, fd.obj=DEfd)

lik = profile.obj$lik
proc = profile.obj$proc

However, we can also bypass the automatic features of function profile.obj.
For example, we might need to manually define quadrature points, weights and
knots.

qpts = knots
qwts = rep(1/length(knots),length(knots))
qwts = qwts %*% t(lambda)
weights = array(1,dim(data))

Now manually define the lik object as squared error from the values of the system:

likmore = make.id()
likmore$weights = weights
lik = make.SSElik()
lik$more = likmore
lik$bvals = eval.basis(times,bbasis)

Object proc is also squared error, defined manually by

procmore = make.fhn()
procmore$weights = qwts
procmore$qpts = qpts
procmore$names = varnames
procmore$parnames = parnames
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proc = make.SSEproc()
proc$more = procmore
proc$bvals = list(bvals = eval.basis(procmore$qpts,bbasis,0),

dbvals = eval.basis(procmore$qpts,bbasis,1))

Now we can try some optimization. We’ll start off with a perturbed set of
parameters:

spars = c(0.3,0.1,2)

Start with the inner optimization, using R optimization function nlminb to opti-
mize:

res0 = inneropt(coefs, times=times, data=data, lik=lik, proc=proc,
pars=spars, in.meth=’nlminb’, control.in=control.out)

ncoefs = res0$coefs

Since we’re using squared error, we can make use of R nonlinear least squares
optimizer nls

res1 = outeropt(data=data, times=times, pars=pars, coefs=coefs,
lik=lik, proc=proc, in.meth="nlminb", out.meth="nls",
control.in=control.in, control.out=control.out)

More generally, we can use nlminb again

res2 = outeropt(data=data, times=times, pars=pars, coefs=coefs,
lik=lik, proc=proc,
in.meth="nlminb", out.meth="nlminb",
control.in=control.in, control.out=control.out)

For squared error, a Newey-West based variance estimate can be calcualted from

Profile.covariance(pars=res1$pars, times=times, data=data,
coefs=res1$coefs, lik=lik, proc=proc)

9.2 Replicated Observations

In order to demonstrate replicated observations, we make use of another set of
data generated at different initial conditions. We then need concatenate these ob-
servations in time, and create new values for bvals and weights. The function
diag.block from the simex package is used below, but there are several packages
in R that provide block-diagonal matrices.

First of all, we generate some new data and set up a data three-dimensional array
for two replications, so that the second dimension has length 2 corresponding to the
number of replications, and the third dimension also has length 2, but corresponding
to the number of variables.

data2 = array(0,c(401,2,2))
data2[,1,] = y + 0.05*array(rnorm(82),2)
data2[,2,] = y + 0.05*array(rnorm(82),2)
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Now, we’ll use a least-squares smooth for initial coefficient estimates and then run
profiling

DEfd2 = data2fd(fd.data2, times, bbasis,
fdnames=list(NULL,NULL,varnames))

res3 = Profile.LS(fhn, data=data2, times=times, pars=pars,
coefs=coefs, lambda=lambda, out.meth=’nls’,
control.in=control.in, control.out=control.out)

The setup functions will work analogously.
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10 Estimation for the groundwater system

A mudslide in a developed area in north Vancouver in 2003 claimed the lives of two
people. The slide was caused, as many are, by the groundwater level rising after a
series of heavy rainfalls to lubricate a boundary between two soil structures.

The city responded by contracting with a soil engineering company to install
sensors that would continuously monitor the groundwater level and to provide an
early warning system that would offer about six hours warning when a dangerous
level was considered to be imminent. It takes about three hours for a rainfall to
percolate through the trees and surface soil into the groundwater zone. In the data
that are analyzed here, rainfalls are recorded and made available as hourly totals.

Soil structures work as a buffer that tends to distribute a sudden large rain-
fall over a longer period of time, so that groundwater does not suddenly rise in
response, but rather tends to reach a new level in roughly an exponential fashion.
Consequently, we proposed to the soil engineers that contacted us the following
simple first order differential equation

dG

dt
= −β(t)G(t) + α(t)R(t− 3) (12)

where G(t) is the groundwater level measured in metres above sea level, R(t) is the
hourly total rainfall in millimetres, and time t is measured in hours.

Parameter β measures the speed with which groundwater responds to a rainfall
event, and if the equation holds, a new level is effectively reached in 4/β time
units. It may be, as we indicate, that β should be allowed to vary slowly with
time because of the fact that different subsoil structures percolate the water down
through themselves at different rates. Parameter α measures the size of the impact
of a unit of rainfall on the rate of change of groundwater, and it, too, may vary over
the observation interval.

Even though the differential equation is rather elementary, we include this prob-
lem in the manual for two reasons. First, it an example of how an input function
can be included in a model. Second, the nature of this input function is particularly
troublesome for most classical differential equation software because it is discontin-
uous in nature with a large number of discontinuities. In fact, an analytic solution
to the equation can be obtained, but is itself almost useless when used in a conven-
tional nonlinear least squares routine because of the need to cope with its multiple
discontinuities.

First we load the two sets of data; rainfall has been lagged by three hours

data(NSdata)

yobs = NSgroundwater
zobs = NSrainfall
tobs = NStimes

N = length(tobs)
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Now we want to construct a functional data object for rainfall. We use a step
function constructed from an order 1 B-spline basis with a knot at each hour bound-
ary.

rangeval = c(0,N-1)
norder = 1
nbasis = N + norder - 2
rainbasis = create.bspline.basis(rangeval, nbasis, norder)
rainfd = smooth.basis(tobs, zobs, rainbasis)$fd

We also need a basis object for representing groundwater as a functional data
object, and we set up an order 3 B-spline basis with knots at the centers of each
hour.

knots = c(rangeval[1],
seq(rangeval[1]+0.5, rangeval[2]-0.5, len=N-1),
rangeval[2])

norder = 3
nbasis = length(breaks) + norder
basisobj = create.bspline.basis(rangeval, nbasis, norder, knots)

Our first analysis will use a constant basis for both β and α. This will provide
a benchmark against which we can measure the improvement in fit when we allow
these parameters to vary over time.

We now set up the two functional data objects for the parameters and store
them, along with rainfall, in the more list object.

conbasis = create.constant.basis(rangeval)
betabasis = conbasis
alphabasis = conbasis
more = vector("list",0)
more$betabasis = betabasis
more$alphabasis = alphabasis
more$rainfd = rainfd

The named list containing the functions for evaluating the right side of the
equation and its partial derivatives is set here.

NSfn = make.NS()

The next task is to set up some initial values, one set for the coefficients of
the basis function expansion of groundwater, and other for the two parameters
that define β and α. The coefficient initial values are set up by smoothing the
groundwater data at a light level.

lambdaDE = 1e0 # A good value for the initial analysis.
penorder = 1 # The penalty is first order
GfdPar = fdPar(basisobj,penorder,lambdaDE)
DEfd0 = smooth.basis(tobs, yobs, GfdPar)$fd
coefs0 = DEfd0$coefs
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The parameter initial values are simply zeros.

pars0 = matrix(0, nbetabasis + nalphabasis, 1)

These commands set up values for the convergence criterion and output level
for R function nls.

control.out = list()
control.out$trace = 1
control.out$tol = 1e-6

Now we’re ready to roll for our first analysis of the data, where we use error sum
of squares measures for both the lik and proc objects. We use the same smoothing
level for this analysis as we did for the initial smooth.

res1 = Profile.LS(NSfn, yobs, tobs, pars0, coefs0, basisobj, lambda,
more = more, out.meth=’ProfileGN’, control.out=control.out)

These commands display the parameter values and set up a functional data
object for groundwater resulting from this analysis.

res1$pars
DEfd1 = fd(res1$coefs, basisobj)

The fit to the data from this analysis is excellent, but the light level of λ that has
been used means that the fitting function will not satisfy the differential equation
at all well. We, of course, want to see how a very near solution would do to fitting
the data.

For this model, we will run into trouble if we try to run the differential equation
solver lsoda included with the CollocInfer package because it assumes a smooth
solution, and our solution is anything but due to the discontinuous nature of the
rainfall input. We finesse this problem by increasing log10(λ) in five steps of size 2,
each time using as initial estimates for the coefficients and parameters the estimated
values obtained on the previous steps. This strategy may sound cumbersome relative
to the idea of increasing λ directly to 108, but is much safer because of the increasing
complexity of the objective function for higher smoothing parameter levels.

Here’s how the first step goes:

lambda = 1e2
res2 = Profile.LS(NSfn, yobs, tobs, res1$pars, res1$coefs, basisobj,

lambda,more = more, out.meth=’ProfileGN’,
control.out=control.out)

DEfd2 = fd(res2$coefs, basisobj)

Now we can compare the fits. This code compares the first fit defined by func-
tional data object DEfd1 to DEfd5 for the final step.

plotfit.fd(yobs, tobs, DEfd1,
xlab="Time (hours)", ylab="Groundwater level (metres)",
title="")

lines(DEfd5, lty=2)
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11 The Hénon Map: A Discrete System

As an example of a discrete-time system, we consider the Hénon map:

xi+1 = 1− ax2
i + yi

yi+1 = bxi

This discrete-time systems does not have a physical interpretation but has been of
substantial interest as a mathematical object. Classical, chaos-generating parame-
ters a and b are:

hpars = c(1.4,0.3)

We’ll generate some data:

ntimes = 200
times = 1:ntimes
x = c(-1,1)
X = matrix(0,ntimes+20,2)
X[1,] = x
for(i in 2:(ntimes+20)) X[i,] = make.Henon()$ode(i,X[i-1,],hpars)
X = X[20+1:ntimes,]
Y = X + 0.05*matrix(rnorm(ntimes*2),ntimes,2)

From here we can call the ususual smoothing functions

res1 = Smooth.LS(make.Henon(),data=Y,times=times,pars=hpars,coefs=Y,
basisvals=NULL, lambda=lambda, in.meth=’nlminb’,
control.in=control.in, pos=0, discrete=1)

and profiling functions. In both of these setting discrete=1 produces basis values
that correspond to a discrete-time system.

res2 = Profile.LS(make.Henon(), data=Y, times=times, pars=hpars,
coefs=Y, basisvals=NULL, lambda=lambda,
in.meth=’nlminb’, out.meth=’nls’,
control.in=control.in, control.out=control.outimes,
pos=0, discrete=1)

Setup functions for this are given by

profile.obj = multinorm.setup(pars=hpars,coefs=coefs,fn=make.Henon(),
basisvals=NULL,var=c(0.1, 0.001),times=times,discrete=1)

lik = profile.obj$lik
proc= profile.obj$proc

If this were to be done manually, for this case a discrete basis is the identity map:

basisvals = diag(rep(1,200))
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Now lets define a process likelihood for the discrete-time system using a Gaussian
transition distribution:

proc = make.Dproc()
proc$bvals = basisvals
proc$more = make.multinorm()
proc$more$qpts = t[1:(ntimes-1)]
proc$more$more = c(make.Henon(),make.cvar())
proc$more$more$f.more = NULL
proc$more$more$v.more =

list(mat=1e-2*diag(rep(1,2)),sub=matrix(0,0,3))

and an observation likelihood is also Gaussian:

lik = make.multinorm()
lik$bvals = basisvals
lik$more = c(make.id(),make.cvar())
lik$more$f.more = NULL
lik$more$v.more = list(mat=diag(rep(100,2)),sub=matrix(0,0,3))

Optimization control variables:

control=list(trace = 0, maxit = 1000, maxtry = 10, reltol = 1e-6,
meth = "BFGS")

control.in = control
control.in$reltol = 1e-12
control.out = control
control.out$trace = 2

Model-based smooth:

coefs = Y
res1 = inneropt(data=Y, times=times, pars=hpars, coefs, lik, proc,

in.meth=’nlminb’, control.in)
ncoefs = matrix(res1$coefs,20)

Now we’ll estimate some parameters

res2 = outeropt(data=Y, times=times, pars=hpars, coefs=coefs,
lik=lik, proc=proc,
in.meth="nlminb", out.meth="nlminb",
control.in=control.in, control.out=control.out)
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12 SEIR Equations and Positive State Vectors

The SEIR equations are commonly used for modeling epidemic processes. In this
case, these models were taken from a study of Measles in Ontario (Hooker, Ellner,
Earn, and Roditi, 2010). The SEIR equations are of the form:

Ṡ = µ− [β(t)(I + v) + ν]S

Ė = β(t)(I + v)S − (σ + ν)E (13)

İ = σE − (γ + ν)I

Here S is the number of people in a population that are susceptible to the disease, E
is the number exposed and I is the number infected. There is usually an additional
state

Ṙ = γI − νR

to represent the population of recovered (and therefore immune) individuals. How-
ever, we will assume that we only observe I and can ignore R. The parameters have
the following representation

µ birth rate – treated as constant

β(t) infection rate; this is parameterized by a constant plus sin and cos functions
with period of one year

β(t) = β0 + β1 sin(2πt) + β2 cos(2πt)

v number of infective visitors

ν death rate

σ rate of movement from Exposed to Infectious.

γ rate of recovery from infection.

A stochastic version of (13) is given by a Gillespie process (Doob, 1945; Gillespie,
1977) in which transitions between states are given Poisson rates. The data in
SEIRdata are generated from such a process, contaminated with multiplicative,
log-normal noise:

data(SEIRdata)

SEIRtimes = SEIRtimes
SEIRdata = SEIRdata

These are univariate. In order to make the data multivariate we will expand it for
each state with NA in the unmeasured states. It will also be useful to use the log of
the data:

data = cbind(matrix(NA,length(SEIRdata),2),SEIRdata)
logdata = log(data)
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We are also given variable names and parameters

SEIRvarnames = SEIRvarnames
SEIRparnames = SEIRparnames

SEIRpars = SEIRpars

The SEIR equations are also built in

SEIRfn = make.SEIR()

We now need to fill in a function definition for β(t) and its derivatives

beta.fun = function(t,p,more){
return( p[’b0’] + p[’b1’]*sin(2*pi*t) + p[’b2’]*cos(2*pi*t) )

}

beta.dfdp = function(t,p,more){
dfdp = cbind(rep(1,length(t)), sin(2*pi*t), cos(2*pi*t))
colnames(dfdp) = c(’b0’,’b1’,’b2’)
return(dfdp)

}

These will be past to SEIRfn in a more object

betamore = list(beta.fun=beta.fun,
beta.dfdp=beta.dfdp,
beta.ind=c(’b0’,’b1’,’b2’))

We will create a basis with knots at weekly intervals, and define a fairly large
smoothing parameter.

rr = range(times)
knots = seq(rr[1],rr[2],1/52)
norder = 3
nbasis = length(knots)+norder-2

bbasis = create.bspline.basis(range=rr,norder=norder,n
basis=nbasis,breaks=knots)

From here we can set up the proc and lik functions

objs = LS.setup(SEIRpars,fn=SEIRfn,fd.obj=DEfd,more=betamore,
data=data,times=SEIRtimes,posproc=1,poslik=0,
names=SEIRnames,lambda=c(100,1,1))

proc = objs$proc
lik = objs$lik
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Here, specifying posproc=1 indicates that (13) should be transformed to model the
log state variables instead of the original variables, while setting poslik=1 indicates
that we will compare the estiamated log state variables to the given data rather than
re-exponentiating first. That is, we are indicating we will use the log data rather
than the original data. This is appropriate given log-normal multiplicative noise, it
is also numerically much faster.

To get an initial starting point we will smooth the log data for I first and set
all the other states to zero.

DEfd = smooth.basis(SEIRtimes,logdata[,3],fdPar(bbasis,1,0.1))

plotfit.fd(log(SEIRdata),SEIRtimes,DEfd$fd)

coefs = cbind(matrix(0,bbasis$nbasis,2),DEfd$fd$coefs)
DEfd = fd(coefs,bbasis)

The next thing to do will be to estimate the log states S and E to best match the
differential equation

res1 = FitMatchOpt(coefs=coefs,which=1:2,proc=proc,pars=pars)

and we can examine the results of this by plotting them graphically

DEfd1 = fd(res1$coefs,bbasis)
plot(DEfd1,ylim=c(5,13))
points(SEIRtimes,logdata[,3])

The resulting plot is given in Figure 1. We can now run an initial smooth using the
estimated coefficients as starting points.

res2 = inneropt(data=logdata,times=times,pars=SEIRpars,
proc=proc,lik=lik,coefs=res$coefs)

And call the optimizing functions. In this case we can use the active input to
indicate that we are only interested in fitting parameters i, b0, b1 and b2

res3 = outeropt(data=logdata,times=times,pars=SEIRpars,
proc=proc,lik=lik,coefs=res2$coefs,
active=c(’i’,’b0’,’b1’,’b2’))

Following this, we can plot the estimated trajectories

DEfd3 = fd(res3$coefs,bbasis)
plot(DEfd3,lwd=2,ylim=c(5,14))

And compare the data to the estimated trajectory

plotfit.fd(logdata[,3],SEIRtimes,DEfd3[3],ylab=’Fit to Data’)

As we can see in Figure 1, this looks very reasonable. It is also useful to look at the
discrepancy between the estimated trajectory and the differential equation. To do
this we first evaluate the trajectory at a set of points
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Figure 1: The results of the profile process on the SEIR data. Left: after smoothing
the data for I and estimating states S and E to agree with (13). Center: a fit to
data after profiling. Right: derivatives of the estimated smooth (dashed, jagged),
and values of (13) for the estimated smooth (solid, smooth).

traj = eval.fd(SEIRtimes,DEfd3)
colnames(traj) = SEIRvarnames

We can then look at both the derivative of that trajectory and the value predicted
by the right hand side of (13)

dtraj = eval.fd(SEIRtimes,DEfd3,1)
ftraj = proc$more$fn(SEIRtimes,traj,res3$pars,proc$more$more)

Plotting these together (seee Figure 1 we see that the match is not exact, but it is
fairly good

matplot(SEIRtimes,dtraj,type=’l’,lty=1,ylim =c(-10,10),
ylab=’SEIR derivatives’)

matplot(SEIRtimes,ftraj,type=’l’,lty=2,add=TRUE)

An alternative strategy here is to fit the data directly (without logging), but keep
the model for the trajectory on the log scale. If we do this, setting poslik=1 indi-
cates that the estimated trajectory should be exponentiated before being compared
to the data. The entire fitting sequence is given below

objs2 = LS.setup(SEIRpars,fn=SEIRfn,fd.obj=DEfd,more=betamore,data=data,
times=SEIRtimes,posproc=1,poslik=1,names=SEIRvarnames,
lambda=c(100,1,1))

lik2 = objs2$lik
proc2 = objs2$proc

res2 = inneropt(data=data,times=SEIRtimes,pars=SEIRpars,
proc=proc2,lik=lik2,coefs=res2$coefs)

res3 = outeropt(data=data,times=SEIRtimes,pars=SEIRpars,
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proc=proc2,lik=lik2,coefs=res2$coefs,
active=c(’i’,’b0’,’b1’,’b2’))

Note that this can take some hours to run.
Below, we briefly demonstrate the manual set-up of the lik and proc objects.

First matrices giving the evaluation of the basis functions at the observation and
quadrature times must be produced

qpts = 0.5*(knots[1:(length(knots)-1)] + knots[2:length(knots)])

bvals.obs = Matrix(eval.basis(times,bbasis),sparse=TRUE)

bvals = list(bvals = Matrix(eval.basis(qpts,bbasis),sparse=TRUE),
dbvals = Matrix(eval.basis(qpts,bbasis,1),sparse=TRUE))

In order to use the log trajectory, we can refer proc to lotrans.ode which then
calls the SEIR functions. This essentially adds an extra layer of “more” to the
object

lsproc = sproc
lsproc$more = make.logtrans()
lsproc$more$more = make.SEIR()
lsproc$more$more$more = betamore
lsproc$more$qpts = qpts
lsproc$more$weights = matrix(1,length(qpts),3)%*%diag(c(1e2,1e0,1e0))
lsproc$more$names = SEIRnames
lsproc$more$parnames = SEIRparnames

This is in comparison to the proc object that does not take the log transformation
can calls the SEIR functions directly.

sproc = make.SSEproc()
sproc$bvals = bvals
sproc$more = make.SEIR()
sproc$more$more = betamore
sproc$more$qpts = qpts
sproc$more$weights = matrix(1,length(qpts),3)%*%diag(c(1e2,1e0,1e0))
sproc$more$names = SEIRnames
sproc$more$parnames = SEIRparnames

Similarly, the make.logstate.lik function allows us to take a standard lik object
and use an exponentiated basis to measure the state. First we define the lik object
as thought we were making a direct comparison with the data

slik = make.SSElik()
slik$bvals = eval.basis(times,bbasis)
slik$more = make.id()
slik$more$weights = array(1,dim(data))
slik$more$names = SEIRnames
slik$more$parnames = SEIRparnames
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Then we can modify this to

lslik = make.logstate.lik()
lslik$bvals = slik$bvals
lslik$more$weights = slik$more$weights
lslik$more = slik
lslik$more$parnames = SEIRparnames

We can now call these with

res2 = inneropt(data=logdata,times=SEIRtimes,pars=SEIRpars,
proc=lsproc,lik=lslik,coefs=res$coefs)

res3 = outeropt(data=data,times=SEIRtimes,pars=SEIRpars,
proc=lsproc,lik=lslik,coefs=res2$coefs,
active=c(’i’,’b0’,’b1’,’b2’))

Note that since we are re-exponentiating before comparing to the data, this can
take a very long time.
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13 Equations for Ecologies and Observations of
Linear Combinations of States

Chemostat experiments allow ecological researchers to experimentally examine pop-
ulation dynamics in a strictly controlled regime. In the experiments of interest, an
algae, Chlorella vulgaris is grown in a small (330ml) tank of water that is contin-
uously stirred. Nitrogen, the main food for Chlorella, is added to the tank at a
rate NI(t) and the tank contents are evacuated and replenished with fresh water
at a continuous rate δ. Once a sufficient algal population has been established, a
population of rotifers, Brachionus calcyciflorus, is added to the chemostat. These
are near-microscopic animals that feed upon the algae. A sample is then taken from
the chemostat on a daily basis and the number of rotifers and algae in the sample
are counted.

The data in ChemoData are the result of such an experiment as reported in
Yoshida et al. (2003). These data are modeled with ordinary differential equations
based on the state variables

1. N(t): concentration of Nitrogen

2. Ci(t): concentration of algal cells for different algal clones i = 1, 2

3. B(t): concentration of breeding rotifers

4. S(t): concentration of senscent rotifers

Although the algae originate from a single culture, the models are based on a
separation in real time into two different clonal types, C1 and C2, which are required
to explain the observed qualitative dynamics of the chemostat. It is this division,
if it can be statistically validated, that provides evidence for real-time evolution.
Additionally, rotifers are divided between breeding and senescent animals according
to whether they continue to reproduce. Inference about the underlying dynamics in
the Chemostat is complicated by lack of physically-observable differences between
algal clones and between breeding and senescent rotifers, thus data is only available
for total algal concentration, C1(t) + C2(t), and total rotifer concentration B(t) +
S(t).

The evolution of these states is modeled by the following equations

dN

dt
= δ(NI(t)−N)− ρC1N

KC1 +N
− ρC2N

KC2 +N

dCi

dt
= Ci

[
χCρN

KC1 +N
− piG(B + S)

KB + max(p1C1 + p2C2, Q∗)
− δ

]
, i = 1, 2 (14)

dB

dt
= B

[
χBG(p1C1 + p2C2)

KB + max(p1C1 + p2C2, Q∗)
− (δ +m+ λ)

]
dS

dt
= λB − (δ +m)S.

The equations above result in 12 parameters (ρ,KC1 ,KC2 , χC , p1, p2,KB , Q
∗, χB ,m,G, λ)

along with directly controllable terms δ and NI(t). Some of these have established
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values in the biological literature and others need to be estimated. Additionally, it
is visually apparent that while the models may capture the qualitative dynamics of
the system, there is considerable stochastic variation evident in the observed system
that also needs to be accounted for.

We start by taking logs of the pa

lpars=c(ChemoPars[1:2],log(ChemoPars[3:16]))

Parameters p2 and p1 represent relative palatability of the two algal clones, as such
only one can be estimated and we fix p2 = 0.

active = c(1:5,7:16)

We’ll choose a fairly large value of lambda.

lambda = rep(100,5)

We need some basis functions

rr = range(ChemoTime)
knots = seq(rr[1],rr[2],by=0.5)
bbasis = create.bspline.basis(rr,norder=4,breaks=knots)

We will also have to set up the basis matrices manually.

mids = c(min(knots),(knots[1:(length(knots)-1)] + 0.25),max(knots))

bvals.obs = eval.basis(ChemoTime,bbasis)

bvals.proc = list(bvals = eval.basis(mids,bbasis),
dbvals = eval.basis(mids,bbasis,1));

We can now set up the proc object. We will want to take a log transformation of
the state here for numerical stability. In general it is better to do finite differencing
after the log transformation rather than before it.

proc = make.SSEproc() # Sum of squared errors
proc$bvals = bvals.proc # Basis values
proc$more = make.findif.ode() # Finite differencing
proc$more$more = list(fn=make.logtrans()$fn,eps=1e-8) # Log transform
proc$more$more$more = list(fn=chemo.fun) # ODE function
proc$more$qpts = mids # Quadrature points
proc$more$weights = rep(1,5)*lambda # Quadrature weights
proc$more$names = ChemoVarnames # Variable names
proc$more$parnames = ChemoParnames # Parameter names

For the lik object we need to both represent the linear combination transform
and we need to model the observation process.

First to represent the observation process, we can use the genlin functions. These
produce a linear combination of the the states (they can be used in proc objects for
linear systems, too).
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temp.lik = make.SSElik()
temp.lik$more = make.genlin()

genlin requires a more object with two elements. The ’mat’ element gives a
template for the matrix defining the linear combination. This is all zeros 2x5 in
our case for the two observations from five states. The ’sub’ element specifies which
elements of the parameters should be substituted into the mat element. ’sub’ should
be a kx3 matrix, each row defines the row (1) and column (2) of ’mat’ to use and
the element of the parameter vector (3) to add to it.

temp.lik$more$more = list(mat=matrix(0,2,5,byrow=TRUE),
sub = matrix(c(1,2,1,1,3,1,2,4,2,2,5,2),4,3,byrow=TRUE))

temp.lik$more$weights = c(10,1)

Finally, we tell CollocInfer that the trajectories are represented on the log scale
and must be exponentiated before comparing them to the data.

lik = make.logstate.lik()
lik$more = temp.lik
lik$bvals = bvals.obs

Because we don’t have direct observations of any state, we’ll use a starting
smooth obtained from generating some ODE solutions

y0 = log(c(2,0.1,0.4,0.2,0.1))
names(y0) = ChemoVarnames

odetraj = lsoda(y0,1:160,func=chemo.ode,parms=lpars)

DEfd = smooth.basis(ChemoTime,odetraj[110:160,2:6],
fdPar(bbasis,int2Lfd(2),1e-6))

C = DEfd$fd$coef

Now, with parameters fixed, we’ll estimate coefficients.

res = inneropt(coefs=C,pars=lpars,times=ChemoTime,data=ChemoData,
lik=lik,proc=proc,in.meth=’optim’)

We’ll for the trajectory and also the appropriate sum of exponentiated states to
compare to the data.

C = matrix(res$coefs,dim(C))
traj = lik$bvals%*%C
obstraj = lik$more$more$fn(ChemoTime,exp(traj),lpars,lik$more$more$more)

Plot these against the data
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X11()
par(mfrow=c(2,1))
plot(obstraj[,1],type=’l’,ylab=’Chlamy’,xlab=’’)
points(ChemoData[,1])
plot(obstraj[,2],type=’l’,ylab=’Brachionus’,xlab=’days’)
points(ChemoData[,2])

Now we can continue with the outer optimization

res2 = outeropt(pars=lpars,times=ChemoTime,data=ChemoData,coef=C,
lik=lik,proc=proc,active=active,
in.meth=’optim’,out.meth=’nlminb’)

We’ll extract the resulting parameters and coefficients.

npars = res2$pars
C = as.matrix(res2$coefs,dim(C))

And obtain an estimated trajectory and the exponentiated sum to comprare to the
data.

traj = lik$bvals%*%C
ptraj = lik$more$more$fn(ChemoTime,exp(traj),npars,lik$more$more$more)

Now we can produce a set of diagnostic plots. Firstly, a representation of the
trajectory compared to the data.

X11()
par(mfrow=c(2,1))
plot(ChemoTime,ptraj[,1],type=’l’,ylab=’Chlamy’,xlab=’’)
points(ChemoTime,ChemoData[,1])
plot(ChemoTime,ptraj[,2],type=’l’,ylab=’Brachionus’,xlab=’days’)
points(ChemoTime,ChemoData[,2])

Now we’ll plot both the derivative of the trajectory and the value of the differential
equation right hand side at each point. This represents the fit to the model.

traj2 = proc$bvals$bvals%*%C
dtraj2 = proc$bvals$dbvals%*%C

colnames(traj2) = ChemoVarnames
ftraj2 = proc$more$fn(proc2$more$qpts,traj2,npars,proc$more$more)

X11()
par(mfrow=c(5,1),mai=c(0.3,0.6,0.1,0.1))
for(i in 1:5){
plot(mids,dtraj2[,i],type=’l’,xlab=’’,ylab=ChemoVarnames[i])
lines(mids,ftraj2[,i],col=2,lty=2)
abline(h=0)

}
legend(’topleft’,legend=c(’Smooth’,’Model’),lty=1:2,col=1:2)

66



14 Acknowledgements

This software was developed as part of the Unifying Approaches to Statistical Infer-
ence in Ecology working group at the National Center for Ecological Analysis and
Synthesis. It was also supported by NSF Grant NSF DEB-0813743 and Federal
Formula Funds Hatch Grant NYC-150446.

References

Cao, J. and J. O. Ramsay (2009). Linear mixed effects modeling by parameter
cascading. Journal of the American Statistical Association 105.

Doob, J. L. (1945). Markoff chains denumerable case. Transactions of the American
Mathematical Society 58 (3), 455473.

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry 81 (25), 23402361.

Hooker, G. (2006). Matlab functions for the profiled estimation of differential equa-
tions. Technical report, Cornell University.

Hooker, G., S. P. Ellner, D. Earn, and L. Roditi (2010). Parameterizing state-
space models for infectious disease dynamics by generalized profiling: Measles in
ontario. Technical report, Cornell University.

Newey, W. K. and K. D. West (1987). A simple, positive semi-definite, heteroskdas-
ticity and autocorrelation consistent covariance matrix. Econometrica 55, 703–
708.

Ramsay, J. O., G. Hooker, D. Campbell, and J. Cao (2007). Parameter estimation
in differential equations: A generalized smoothing approach. Journal of the Royal
Statistical Society, Series B (with discussion) 65 (5), 741–796.

Ramsay, J. O., G. Hooker, and S. Graves (2009). Functional Data Analysis with R
and Matlab. New York: Springer.

Ramsay, J. O. and B. W. Silverman (2005). Functional Data Analysis. New York:
Springer.

Yoshida, T., L. E. Jones, S. P. Ellner, G. F. Fussmann, and N. G. Hairston (2003).
Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424,
303–306.

67


