
MATLAB Functions

for Profiled Estimation of

Differential Equations

Giles Hooker

June 23, 2010

Contents

1 Introduction 2
1.1 Defining the problem . 2
1.2 The profiling estimation procedure 3

1.2.1 The basis function expansion of xi: 4
1.2.2 The inner optimization: 4
1.2.3 The outer optimization: 5

2 Example: FitzHugh-Nagumo Equations 5

3 MATLAB Objects Needed for the Estimation. 6
3.1 Cell Arrays . 6
3.2 Data Objects . 8
3.3 Basis Objects . 8
3.4 Functional Data Objects . 10
3.5 Weights and Smoothing Parameters 10

4 Defining the Differential Equation 11
4.1 Derivatives on the Left Hand Side 11
4.2 Functions for the Right Hand Side 11

5 Calling Estimation Functions 14
5.1 Model-Based Smoothing . 14
5.2 Profiled Estimation . 15

6 Covariance Matrices of Parameter Estimates 16

7 Parameter Estimation with Replication 17

1

8 Estimating Starting Values from a Smooth 18
8.1 Unmeasured Variables . 18
8.2 Initial Estimates for θ . 19

9 An Example of Generality 19

10 Forcing Functions and Diagnostics 20
10.1 Forcing Linear Systems . 21
10.2 Forcing General Differential Equations 22

11 Predefined Right Hand Side Systems 23
11.1 Forced, Linear Systems . 23
11.2 Univariate polynomial functions 25

1 Introduction

This manual is designed to accompany a Matlab software package that esti-
mates the parameters in differential equation models by a profiling method. For
details on the profiling method and its application to dynamic systems identifi-
cation, see Ramsay, Hooker, Cao and Campbell (2007). The profiling procedure
used in this package is closely related to developments in functional data anal-
ysis described in Ramsay and Silverman (2002, 2005), and it is assumed that
the user is already reasonably familiar with this material. Moreover, the pack-
age also makes heavy use of the Matlab software developed by these authors,
and available at the website www.functionaldata.org. This software must be
installed in order to use this package.

1.1 Defining the problem

Dynamic systems are designed to model how one or more outputs in an
input/output system respond to a change in one or more inputs. Since change
is directly reflected in the derivative of an output following the change in input,
dynamic systems usually consist of a set of differential equations. If we use
the notation xi(t) to refer to the ith output function value at time t, i =
1, . . . , d, then its first derivative is denoted in various ways in the dynamic
systems literature, including dxi/dt, ẋi(t) and Dxi(t). We shall use the “dot”
notation. If we need to refer to the vector of length d containing all of the
output derivatives, we use the notation ẋi(t).

The functions described in this software package are designed to provide
estimates of a parameter vector θ defining an ordinary differential equation of
the form:

ẋ(t) = f(t, x(t), θ). (1)

Equation (1) can also represent a set of d coupled differential equations, and in
that case, we write

ẋi(t) = f(t, x1(t), . . . , xd(t), θ), i = 1, . . . , d, (2)

2

or more compactly in matrix notation

˙x(t) = f(t,x(t), θ). (3)

The right hand function f defines the functional relationship of change,
expressed as ẋ(t), to:

• x itself,

• time t in ways other than through the value x(t) and

• a vector of parameters θ whose values must be estimated in order to com-
pletely define the dynamic system.

It is frequently the case that the dependency on time t other than via x(t) is
through one or more input functions ui`, ` = 1, ..., Li. In this case, these input
functions are often referred to as forcing functions that are said to force the
specific equation(s) affected by them, and (1), for example, can also be written
as

ẋ(t) = f(x(t), u(t), θ). (4)

For a specific example of a dynamic system, see (7) defining the FitzHugh-
Nagumo equations in the next section.

We assume that we have noisy data

yi(tij) = xi(tij) + εij , j = 1, . . . , ni,

and that we wish to use these data to estimate θ. The measurement times tij
may not be the same for all of the variables yi, and the standard deviations, σi,
of the measurement errors εij may also vary. This software has been produced
to take these aspects of the data into account.

More generally, however, the derivatives need not necessarily be of the order
1. That is, the order m of equation i, being the order of the highest derivative
involved in the equation, may vary from equation to equation, and may also be
0. In particular, a zero’th order derivative for some component corresponds to
an Algebraic Equation. Right side function f may also incorporate derivatives
of x(t), and delayed evaluation, x(t − δ). While the initial presentation of the
software here will assume a set of first order ordinary differential equations, Sec-
tion 9 will demonstrate the application of this software to equations of varying
orders.

1.2 The profiling estimation procedure

The profiling estimation procedure used by this software has two stages of
optimization, which we will label the inner and outer stages. Each of these
stages is associated with its own unique fitting criterion.

3

1.2.1 The basis function expansion of xi:

We approximate each xi by a basis function expansion,

x̂i(t) =
Ki∑
k=1

cikφik(t),

whereφik(t) is a specific basis function in the basis system used for variable i,
and the coefficients cik are estimated from the data so as to provide an optimal
fit. Note that the nature and number of basis functions can vary from one
variable to another. Ramsay and Silverman (2005) can be consulted for advice
on how to choose a basis function system.

1.2.2 The inner optimization:

In the inner stage, the equation parameter vector θ is kept fixed, and it is
the basis expansion coefficients cik that are estimated. This in turn estimates a
vector of smooth functions, x̂i. We can, if we wish, emphasize that the fit in the
inner stage depends on the value of parameter vector θ by using the notation
x̂i(t|θ).

The data are fit by minimizing the penalized sum of squares

G(x, θ, λ) =
n∑
i=1

{
‖yi − xi(ti)‖2 + λi

∫
(ẋi(t)− fi(t, x(t), θ))2 dt

}
, (5)

where yi and ti are intended to indicate the vectors of measured values and
measuring times for the ith variable, respectively. The norm notation ‖ · ‖2 is
used here to represent a sum of squared error measure of fit of the estimated
variable values to their respective data. Varying weights for each squared error
are permitted.

The second term in this equation specific to variable i measures the fidelity
of x̂i to the differential equation specific to that variable. The fit measure
in this second term is also a least squares measure, but the summation over
discrete values ti of t in the first term has been replaced an an integration over
the continuum of t values. We approximate the integral in (5) by a numerical
quadrature method whose accuracy can be controlled by the user of the software
package.

A smoothing parameter λi trades-off fidelity to the equations and to the data
for variable i. When λi is near zero, the second term in (5) has little impact
on the fit, and we are consequently smoothing the data with little regard for
whether the smooth satisfies the differential equation for that variable. However,
when λi is large, the second term tends to dominate the criterion (5), and
consequently x̂i is forced to closely satisfy the differential equation, with the
fit to the data being as good as possible given this constraint. If we use the
notation xt|θ as an estimate of the true trajectory, or path, that the system took,
then we see that the composite fitting criterion (5) allows for some discrepancy
between an exact solution to the differential equation1 and the estimated fit

4

x̂i. In this way we can accommodate modeling situations in which the equation
is known to only provide an approximate model of the actual dynamic system
giving rise to the data.

Because we use a quadrature rule to approximate the integrals in (5), each
second term is also essentially an error sum of squares. Consequently, the total
fit measure (5) can now be re-expressed as a non-linear least-squares problem,
and the Gauss-Newton algorithm is employed in our software to actually carry
out the inner optimization.

1.2.3 The outer optimization:

The parameters in vector θ are varied in the outer optimization, and are
required to minimize the outer criterion:

J(θ, λ) =
n∑
i=1

‖yi − xi(ti|θ)‖2, (6)

which measures only the squared distance between the data and the smooth.
We use the notation xi(ti|θ) to stress that the fit to variable i in this stage is
actually a function of θ, since it is re-estimated each time θ is changed. This
functional relationship is what is implied by the term profiling.

Note that the outer criterion lacks the fidelity-to-equation terms in (5).
These are no longer needed, since the functional relationship that profiling im-
plies ensures that the fit will always be smoothed at a level defined by the value
of λi. There is no need to penalize the roughness of x̂i twice.

We can also solve (6) via another Gauss-Newton procedure, making use of
the derivative

dJ

dθ
=
dJ

dc

dc

dθ
,

where
dc

dθ
= −

[
d2G

dc2

]−1
d2G

dcdθ

by the Implicit Function Theorem.
The rest of this document describes how to get this software to do this

by making use of the Functional Data Analysis (FDA) software package for
MATLAB.

2 Example: FitzHugh-Nagumo Equations

Throughout this document, we will use the FitzHugh-Nagumo equations as
an example. These relatively simple equations are widely used in modeling
neuro-physiological processes, and a discussion of the historical development of
these equations as well as many applications can be found in Beuter, Glass,

5

Mackey and Titcombe (2003). The equations are

V̇ = c
(
V − V 3

3 +R
)

(7)

Ṙ = − 1
c (V − a+ bR) , (8)

with the θ = {a, b, c} being the unknown parameter vector, variable V being the
voltage across the cell boundary and R representing a set of recovery processes.
If we use the notation in (1), these equations are

ẋ1 = c
(
x1 − x3

1
3 + x2

)
(9)

ẋ2 = − 1
c (x1 − a+ bx2) . (10)

and we could also use an algebraic equation to write them as

ẋ1 = c
(
x1 − x3

3 + x2

)
(11)

ẋ2 = − 1
c (x1 − a+ bx2) (12)

x3 = x2
1. (13)

A plot of solutions to these equations is given below for parameter values
{0.2, 0.2, 3} and initial conditions [x1(0), x2(0)] = [−1, 1].

3 MATLAB Objects Needed for the Estimation.

3.1 Cell Arrays

The software works uses Matlab cell arrays to contain information about
each variable, since the nature an amount of information can vary from variable
to variable. That is, the contents of each cell in a cell array corresponds to one
variable xi of the system. When the system is observed only once, these arrays
take the form of a row vector; one element of the row representing one variable of
the system. For example, the two equations in the FitzHugh-Nagumo equations

6

above appear in the first and second cells in a cell array defined by a Matlab
command such as FHcell = cell(1,2), respectively.

When a system has been observed a number of times, each replication is
represented by the corresponding row of a two-dimensional array. The descrip-
tion of the system used here will assume data without replications. Section 7
will introduce the modifications necessary to estimate equations with replicated
data.

When there are individual numbers which correspond to variables of a system
– for example, the smoothing parameters, λ or the variable weights wi – these
may be represented by a regular numeric array rather than a cell-array.

The use of cell arrays is detailed in standard MATLAB manuals, but because
of the heavy reliance of this code on them, a quick review of the basics is given
below. Cell arrays behave like standard arrays, except that each component
may contain an arbitrary MATLAB object. In our case, they will be used to
store estimated paths and bases.

Cell arrays are indexed in the same manner as standard arrays. The crucial
distinction is that assigning content to arrays makes use of curly braces. En-
closing a vector of objects in curly braces denotes a cell array containing those
objects, thus

A = cell(1,2);

which creates a 1 by 2 array of empty cells, is equivalent to

A = {[], []}.

Similarly, calling content from a cell array requires curly braces so that

A(1,1)

returns a 1 by 1 cell array containing an empty object, whereas

A{1,1}

returns the empty object with A defined above. Note that

A(1:2)

is legitimate notation in MATLAB, but

A{1:2}

is not. A final shortcut that we make use of is to allow the entries in a cell array
to be replicated, so that to insert 0 as the content of both entries of A we can
either set

A(1:2) = {0,0}

or

7

A(1:2) = {0}.

Note that

A{1:2} = 0

will produce an error.

3.2 Data Objects

The raw data supplied to the estimation scheme is stored in two cell arrays:

Tcell: the times at which the variable of the system is measured.

Ycell: the values measured at the times in Tcell.

As indicated above, the columns of these cell arrays correspond to variables and
the rows to replications, and each cell contains a vector of values. Of course,
the number of times values in a specific cell in Tcell must equal the number
of variable values in the corresponding cell in Ycell, but may vary from one
variable to another.
We will use simulated data to demonstrate the system in action. To do this, we
require data in an object path cell, which we set up as follows:

Tcell = {0:0.05:20, 0:0.05:20};
[time,path] = ode45(@fhnfunode,0:0.05:20,[-1,1],[],[0.2 0.2 3]);
path_cell = {path(:,1), path(:,2)}

which produces the paths plotted above. The function fhnfunode calculates the
right-hand side of the FitzHugh-Nagumo equations for a given vector of inputs
and ode45 is a Runge-Kutta solver for differential equations in MATLAB. From
this, we can create data by adding noise to the FitzHugh-Nagumo path:

Ycell = path_cell;
for(i = 1:length(path_cell))
Ycell{i} = path(:,i) + 0.5*randn(size(path,1),1);

end

Note that some elements of Tcell and Ycell may be left as empty cells.
These represent unmeasured variables of the system. Tcell may also be given
as a simple vector, in which case all variables of the system are assumed to be
measured at the same times.

3.3 Basis Objects

We represent the smooth xj for each variable of x by a functional data
object stored in a cell array. Each variable may be represented by a different
basis system. However, it is expected that each basis will cover the same range
and will use the same quadrature points. For a cell-array of basis objects,
basis cell, the function

8

checkbasis(basis_cell)

will verify that all the bases have the same range. This should not be necessary
if basis cell is set up as follows.

For ease of use, a function MakeQuadPoints is available:

quadvals = MakeQuadPoints(knots,nquad)

where knots is the set of all knots used in B-spline bases across all variables of
the system and nquad is the number of quadrature points to place between knots.
This sets up equally spaced quadrature points on these knots and associates
Simpson’s rule quadrature values with them.

A B-spline basis using these quadrature points can be set up via the function

basis_obj = MakeBasis(range,nbasis,norder,knots,quadvals,nderiv);

with the following inputs

range: the range of the basis

nbasis: the number of basis functions to use

norder: the order of the basis functions

knots the knots to use

quadvals: as above, quadrature points and values

nderiv: the number of derivatives at which a functional data object is expected
to be evaluated. This should be the same as the maximum number of
derivatives appearing in (1).

We have found that good smooths can require very large numbers of basis
functions. However, the order of the B-spline does not seem to affect the quality
of the smooth and the minimum value for nquad, 5, appears to be sufficient.
Usually, only the functional data objects and their first derivatives will need to
be evaluated.

The following code sets up basis functions for each of the variables in the
FitzHugh-Nagumo equation example:

knots = 0:0.5:20;
quadvals = MakeQuadPoints(knots,5);

norder = 3;
nbasis = length(knots) + norder - 2;
basis_obj = MakeBasis([0 20],nbasis,norder,knots,quadvals,1);
basis_cell = {basis_obj, basis_obj};

9

3.4 Functional Data Objects

In order to perform the non-linear least squares estimation for the coefficient
vectors of these basis functions, initial values need to be provided. They can be
set to zero, but it may be advantageous to estimated these by a smooth using
a first-derivative penalty. The function smoothfd cell provides a wrapper to
smoothfd to loop over the values in a cell-array of objects:

lambda0 = 0.1;
Lfd_cell = cell(size(basis_cell));

for(i = 1:length(basis_cell))
fdPar_cell{i} = fdPar(basis_cell{i},1,lambda0);

end

DEfd = smoothfd_cell(Ycell,Tcell,fdPar_cell);

When some elements of Tcell are empty, the coefficients of that variable are
estimated as zero. This does not always provide great results and some other
initial conditions may be helpful. This might include simply using a nonzero
constant. Other possibilities are discussed in Section 5.1.

DEfd is now the cell array of functional data objects that we want. For the
purposes of smoothing, we need the coefficients of these objects. In this case

coefs = getcellcoefs(DEfd);

provides these as a single vector concatenated from all the coefficients vectors.
This can then be used as an argument to lsqnonlin as detailed in Section 5.

3.5 Weights and Smoothing Parameters

Two further objects are needed:

lambda defines the smoothing parameter to use in (5). It may be a vector,
defining one parameter for each variable of the system. If a singleton, it
is assumed to be the same for every variable.

wts defines a weight for each observation. It may be empty (each observation
gets the same weight), a vector (giving a different weight to each variable of
the system, but the same weight within a variable) or a cell array (defining
a different weight for each observation).

The variable weights in vector wts should be inversely proportional to the
size of measurement noise in each variable. Alternatively, we might weight by
the simple variance in each variable.

The smoothing or bandwidth parameter values in vector lambda control the
extent to which each estimated variable satisfies it’s corresponding differential
equation. If λi is relatively close to zero, the estimated variable x̂i will only

10

be lightly constrained by the differential equation, and will primarily smooth
the data. For difficult problems having complex fitting surface topology when
the equations are closely satisfied (as is the case for the FitzHugh-Nagumo
equations) small values in lambda are advisable in the initial stages of parameter
estimation, followed by increasing them incrementally until the desired fidelty
to the equation has been attained.

The setting up of wts and lambda is illustrated in the following code:

lambda = 1000*ones(size(DEfd));

wts = zeros(size(DEfd));
for(i = 1:length(DEfd))
wts(i) = 1/sqrt(var(Ycelli));

end

4 Defining the Differential Equation

4.1 Derivatives on the Left Hand Side

The left hand side requires a vector alg to be specified giving the order of
derivative to be used in each variable of the system. This is a vector of non-
negative integers of the same length as the system, specifying the order of each
differential equation.

Usually, as in the case of the FitzHugh-Nagumo equations, this is simply

alg = [1 1];

but algebraic equations may be specified by setting the corresponding variables
of alg to zero. Higher-order equations may be specified by correspondingly
higher entries in alg. An example of using algebraic and higher order terms is
given in Section 9.

If alg is left empty, it is assumed to be a vector of ones.

4.2 Functions for the Right Hand Side

The estimation procedure requires the user to write functions to compute
f(t, x, θ) and several of its derivatives. All these functions take the one of the
two following two forms

fn(t,DEfd,pars)

or

fn(t,DEfd,pars,moreinfo)

11

where t is a vector of times at which to evaluate the function and pars is the
vector of parameter estimates. The fourth argument moreinfo in the second
form may be required to contain any extra input into the function, such as
information on forcing functions. The form of this input is left up to the user,
but would typically be a struct object with fields containing additional required
quantities.

The output of each required function should be a cell-array of values. The
number of dimensions of the cell array will depend on whether the function
values only are computed, the partial derivatives with respect to x, and/ or
the partial derivatives with respect to θ. The total number of dimensions is
#(no. derivatives)+1. The first dimension is determined by the function values,
the second by the x-derivatives if computed, then followed by the θ-derivatives
if computed. That is, the variables of F are in the first dimension with the
derivatives in the following dimensions. Derivatives with respect to variables of
x will always be taken before derivatives with respect to variables of θ. The
elements of these cell arrays will be time series corresponding to the evaluation
of the relevant variable and derivative at the smooth DEfd evaluated at times
t. See below for illustrations of this output organization.

To aid in writing these functions, a wrapper function eval fdcell is pro-
vided

fvals = eval_fdcell(Tcell,DEfd,deriv)

where Tcell is either a cell-array or a vector (implicitly made into a cell-array
all elements containing the vector) of time points at which to evaluate DEfd and
deriv is the order of derivative to take and may be a vector so that

eval_fdcell(Tcell,DEfd,0)

provides the values of DEfd at the observation times and

eval_fdcell(0:20,DEfd,1)

provides the first derivatives of DEfd at unit time intervals. The output from
these are, of course, cell arrays.

The organization of the output of the functions is illustrated in the following
examples for the FitzHugh-Nagumo equations.

Thus, the function defining the right hand side of the FitzHugh-Nagumo
equations will be given by a MATLAB file containing (p is substituted for θ
throughout the code):

function r = fhnfun(t,DEfd,p)

x = eval_fdcell(t,fd_cell,0);
r = x;
r{1} = p(3)*(x{1} - x{1}.^3/3 + x{2});
r{2} = -(x{1} -p(1) + p(2)*x{2})/p(3);

end

12

the derivative of f with respect to the parameters is

function r = fhndfdp(t,DEfd,p)

x = eval_fdcell(t,fd_cell,0);
r = cell(2,3);

r(1:2,1:3) = {0};

r{1,3} = (x{1}-x{1}.^3/3+x{2});
r{2,1} = 1/p(3);
r{2,2} = (-x{2}/p(3));
r{2,3} = ((x{1}-p(1)+p(2)*x{2})/(p(3).^2));

end

and the second derivative with respect to x and θ is

function r = fhnd3fdxdp(t,DEfd,p)

r = cell(2,2,3);
r(1:2,1:2,1:3) = {0};

r{1,1,3} = 1 - eval_fd(t,fd_cell1).^2;
r{1,2,3} = 1;
r{2,1,3} = 1/p(3)^2;
r{2,2,2} = - 1/p(3);
r{2,2,3} = p(2)/p(3)^2;

end

Where a derivative is constant, a simple number can be returned in the corre-
sponding cell and this will save some computation.

In order to perform the profiled estimation scheme, a total of five functions
are required:

f,
df

dx
,
df

dθ
,
d2f

dx2
,
d2f

dxdθ
.

If variance estimates are required for the parameters, a further four functions
are needed:

d2f

dθ2
,
d3f
dx3

,
d3f
dx2dθ

,
d3f
dxdθ2

.

Note that although the examples above are given for an ODE, these functions
may also incorporate evaluating derivatives of DEfd and evaluating variables of
DEfd at lagged intervals.

The estimation code expects these functions to be given in a struct whose
elements are function handles with fields specified in the following manner:

13

fn.fn = @fhnfun; % RHS function
fn.dfdx = @fhndfdx; % Derivative wrt inputs (Jacobian)
fn.dfdp = @fhndfdp; % Dervative wrt parameters
fn.d2fdx2 = @fhnd2fdx2; % Hessian wrt inputs
fn.d2fdxdp = @fhnd2fdxdp; % Hessian wrt inputs and parameters
fn.d2fdp2 = @fhnd2fdp2; % Hessian wrt parameters.
fn.d3fdx3 = @fhnd3fdx3; % 3rd derivative wrt inputs.
fn.d3fdx2dp = @fhnd3fdx2dp; % 3rd derivative wrt intputs and pars.
fn.d3fdxdp2 = @fhnd3fdxdp2; % 3rd derivative wrt inputs and pars.

% dimensions = time, variable, input,
% parameters

and the struct fn can now be used as an input into any of the estimating
functions.

5 Calling Estimation Functions

The software carries out two tasks. The inner optimization of G(x, θ, λ)
defined in (5), equivalent to conducting a model-based smooth, and an outer
optimization J(θ, λ), or choosing the parameters that optimize the smooth.

5.1 Model-Based Smoothing

The set of coefficients minimizing (5) can be obtained by a call to the MATLAB
routine lsqnonlin to optimize

SplineCoefErr(coefs,basis_cell,Ycell,Tcell,wts,lambda,...
fn,alg,pars,moreinfo)

Here SplineCoefErr calculates the value of G(x, θ, λ), along with its derivative
with respect to the coefficients defining the smooth xθ.

Array coefs may be obtained as in §3.3 and arraypars contains the parame-
ters θ. Struct object fn extras is an optional extra argument that contains any
additional information required to compute the right hand side and its deriva-
tives, and does not needed to be included in the function call if no additional
information is required. All other inputs are as given in the above sections.

In the case of the FitzHugh-Nagumo example, we would call lsqnonlin as
follows:

coefs = lsqnonlin(@SplineCoefErr,coefs,[],[],[],basis_cell,...
Ycell,Tcell,wts,lambda,fn,alg,pars);

the cell array of functional data objects can then be recovered by

DEfd = Make_fdcell(coefs,basis_cell);

As an alternative, the function

14

DEfd = SplineEst(fn,Tcell,Ycell,pars,knots_cell,wts,...
lambda,lambda0,rough_ord,alg,lsopts,DEfd,moreinfo);

provides a wrapper for the call to lsqnonlin. It defines a basis using the knots
specified in knots cell (again, one set of knots per variable of x, but this may
be a vector which will then be replicated across all variables), and creates an
initial smooth defined by lambda0 and the roughness penalty specified by the
Lfd object rough ord.

lsopts are the optimization options to be passed to lsqnonlin. If the
functional data object cell array DEfd is not empty, this is passed directly to
lsqnonlin without defining a new cell array of bases.

We could alternatively create DEfd this smooth by the call:

DEfd = SplineEst(fn,Tcell,Ycell,[0.2 0.2 3],...
0:0.05:20,wts,1000,0.1,1,[],[],[],[]);

This routine may not always give good results when unmeasured variables
are poorly specified, or when there is relatively little data. Section 8 details
a function that will estimate unmeasured variables from the others, using the
differential equation. Possibly the best solution is to smooth the data with the
differential equation using a small value of λ and using this as initial conditions
with a larger λ. This scheme may need to be iterated a few times to achieve an
appropriate amount of smoothing.

5.2 Profiled Estimation

The profiled estimation routine to estimate θ uses its own Gauss-Newton
iteration scheme. This allows DEfd to be updated along with pars, providing
some computational speedup. The routine is called by

[newpars,DEfd] = Profile_GausNewt(pars,lsopts,DEfd,fn,...
lambda,Ycell,Tcell,wts,alg,lsopts2,moreinfo,...
pen,dpen,pen_extras);

here lsopts and lsopts2 are optimization options to the outer and inner min-
imization routines respectively. They follow exactly the optimization toolbox
options and may be set with the MATLAB optimset command. As in model
based smoothing, fn extras does not needed to be included in the function call
if these two arguments are empty.

Finally, it is possible that we may wish to modify the outer criterion to

J̃(θ, λ) = J(θ, λ) + P (θ)

in which P (θ) regularizes the estimated values of θ. This will be the case if,
for instance, θ is high dimensional. This might occur, for example, if they are
taken to be coefficients of a basis expansion for a functional parameter. The
entries pen, dpen and pen extras define such penalties on the parameters. pen

15

and dpen should be functions accepting pars and pen extras and outputting
a vector giving the penalty (to be squared) and it’s derivative respectively.

This separate Gauss-Newton optimization routine has been employed so that
the object DEfd may be updated as the optimization progresses. Whenever we
update θ, the coefficients c will also be updated, and their new values can be
anticipated by using dc/dθ.
For the FitzHugh-Nagumo equations, the call becomes

lsopts_out = optimset(’DerivativeCheck’,’off’,’Jacobian’,’on’,...
’Display’,’iter’,’MaxIter’,maxit0,’TolFun’,1e-8,’TolX’,1e-10);

lsopts_in = optimset(’DerivativeCheck’,’off’,’Jacobian’,’on’,...
’Display’,’off’,’MaxIter’,maxit1,’TolFun’,1e-14,...
’TolX’,1e-14,’JacobMult’,@SparseJMfun);

[newpars,newDEfd] = Profile_GausNewt(pars,lsopts_out,DEfd,fn,...
lambda,Ycell,Tcell,wts,alg,[],[],[],lsopts_in);

Note that an initial guess for pars is necessary to start the minimization.

6 Covariance Matrices of Parameter Estimates

A covariance matrix may be calculated for the parameter estimates via a
δ-method:

Var(θ) ≈ dθ

dx

T

Var(y)
dθ

dx

where

dθ

dx
= −

[
d2J

dθ2

]−1
d2J

dθdY

These two matrices, along with Var(y), must be calculated individually.
d2J/dθ2 is calculated using the following function:

d2Jdp2 = make_d2jdp2(DEfd,fn,Tcell,lambda,pars,alg,wts,...
Ycell,moreinfo,d2pen,pen_extras)

where d2pen is a function providing the second derivative of a penalty with
respect to parameters. It takes the same arguments as pen and dpen in
Profile GausNewt.

d2J/dθdx is calculated by the following

d2Jdpdy = make_d2jdpdY(DEfd,fn,Tcell,lambda,pars,alg,wts,...
Ycell,moreinfo)

and Var(y) is a diagonal matrix calculated in

16

S = make_sigma(DEfd,Tcell,Ycell,ind)

where ind indicates the method used to calculate the variance of the observa-
tional noise. A value of 0 indicates that all variables have an individual vari-
ance, 1 indicates pooling across replicates but within variables, 2 pooling across
variables within replicates and 3 pooling across all variables. These should be
chosen according to the system. It is most likely that 0 or 1 will be appropriate
– this will be especially true when different variables are measured in different
units. However, when different variables share the same scales and measurement
accuracy, using options 2 or 3 will stabilize the variance estimate.

A covariance matrix for the parameter estimates for the FitzHugh-Nagumo
equations can now be calculated by

d2Fdp2 = make_d2jdp2(newDEfd_cell,fn,Ycell,Tcell,lambda,...
newpars,alg,wts)

d2FdpdY = make_d2jdpdy(DEfd,fn,Ycell,Tcell,lambda,newpars,...
alg,wts);

dpdY = -d2Fdp2\d2FdpdY;

S = make_sigma(DEfd,Tcell,Ycell,0);

Cov = dpdY * S * dpdY’

7 Parameter Estimation with Replication

In some cases, more than one time series corresponding to a system of dif-
ferential equations may be observed. Moreover, it is possible that only some of
the parameters will be common to different replications of the system.

Where replicates of the system are measured, the cell arrays, Tcell, Ycell,
and DEfd now become cell matrices with rows representing replications and
variables given in columns. The bases for different replications do not need to
share the same range or quadrature points.

In order to estimate parameters for such systems, new functions need to be
used for those in §5 and §6. These take the same arguments as their single-
replicate counterparts with the additional input of

parind a matrix whose rows give the indices of the entries of the parameter
vector that correspond to parameters for each replicate.

The use of parind allows some parameters to be shared and others estimated
separately. For instance, if, in the FitzHugh-Nagumo equations, parameters a
and b were shared between two replicates, but c was not, we would define the
following

17

pars = [a b c1 c2];

parind = [1 2 3;
1 2 4];

if parind is left empty, the code uses a default that all parameters are common
to all replications.

The input parind follows pars in each of the functions, SplineCoefErr rep,
Profile GausNewt rep, make d2jdp2 rep and make d2jdpdy rep. These may
all be used with single-replicate systems as well. make sigma already incorpo-
rates replications.

8 Estimating Starting Values from a Smooth

This section details two functions that will provide estimates for unmeasured
variables of a system and initial parameter values respectively. We assume that
all variables have been estimated by a smooth of the data using, say, a first-
derivative penalty.

8.1 Unmeasured Variables

Suppose that we have derived DEfd from a call to smoothfd cell which has
set some unmeasured variables to be zero. If we desire a better initial estimate,
we could treat the smooths for the measured variables of DEfd as fixed, and then
try to find coefficients for the unmeasured variables that best fit the differential
equation.

The following function can be optimized with lsqnonlin:

SplineCoefErr_DEfit(coefs,DEfd,ind,fn,pars,alg,moreinfo)

Here ind gives the indices of the unmeasured variables, coefs is a single vector
giving initial estimates of the coefficients for the variables listed in ind. DEfd
is the fit from the smooth, pars are guesses at the parameters and fn, alg and
fn extras are given by the same objects as throughout the rest of the software.

The call to lsqnonlin then looks like

coefs1 = lsqnonlin(@SplineCoefErr DEfit,coefs,[],[],[],...
DEfd,ind,fn,pars,alg,moreinfo);

The smooth DEfd can then be updated with the call

DEfd = update_fdcell(coefs1,ind,DEfd);

which replaces the coefficients of the variables in ind with the estimated coefs1.
Note here that we assume a knowledge of pars, usually as an initial guess. Such
an estimate should then be used directly in profile estimation, rather than being
re-estimated using the routine below.

18

8.2 Initial Estimates for θ

An alternative methodology for estimating parameters in differential equa-
tions is to first produce a smooth of the data, treat this as fixed, and then choose
the parameters that make that smooth look most like a solution. This has the
advantage that we are only optimizing over the parameter values, rather than
the coefficients, and does not require repeated numerical solutions to the differ-
ential equation. Unfortunately, when there is little or noisy data, the smooth
produced can be a very poor representation of a differential equation trajectory,
especially on the derivative scale. This can lead to highly biassed parameter
estimates. Nonetheless, it may be useful to use this technique to obtain initial
parameter values from which to start a profiled estimation.

We assume that a smooth DEfd to the data has been produced through a
call to smoothfd cell. In particular, all variables of DEfd need to have been
measured. The function

SplineParsErr(pars,DEfd,fn,moreinfo)

can then be used as an argument to lsqnonlin to produce parameter estimates.
This already requires some initial guess at pars, and it may be most useful to
simply employ that in profiled estimation.

9 An Example of Generality

So far, the discussion of this software has been given in terms of first-order or-
dinary differential equations. Here, we give an example of a differential-algebraic
equation with delays. Let us take a toy equation as an example:

ẍ(t) = ax(t)2 + by(t)

y(t) =
1

ecy(t) + x(t)

This example is intended for expository purposes and is not intended to be
realistic.

Here p = {a, b, c, d} are considered unknown. This equation can be con-
verted into a single-variable system by solving for y at each time t. Doing so is
computationally expensive, however, and we can estimate the system directly
using the formulation above.

In order to set up the differential equation for the system we first observe
that the derivatives on the left hand side correspond to

alg = [2 0];

We can then define a right hand side function

19

function r = DIFEfun(t,DEfd,p)

x = eval_fdcell(t,DEfd,0);

r = x;

r1 = p(1)*x{1}.^2 + p(2)*x{2};
r2 = 1/(exp(p(3)^x{1})+x{2});

end

and derivatives can be taken with respect to this function as normal.
Right hand side functions involving derivative terms of the form

ẍ(t) = aẋ(t)2 + bx(t)

currently need to be handled by expanding the system by defining a new variable
y(t) = ẋ(t) producing

ẏ(t) = ay(t)2 + bx(t)
ẋ(t) = y(t).

Delay parameters may currently be incorporated only in forcing variables.
Consider the system:

ẋ(t) = ax(t) + bf(t− d)

the derivative of the right hand side with respect to d is

−bdf
dt

(t− d)

so that forcing variables must be differentiable. They need to be twice-differentiable
in order to accommodate interval estimation.

The software does not currently support delay parameters occurring within
variables of the system. It also does not support derivatives occurring in the
right hand side, except when expanded as suggested above.

10 Forcing Functions and Diagnostics

There are a number of diagnostics that can be used to check the fit of the
equations. Among these are the discrepancy between the smooth of the data
and an exact solution to the differential equations. This will provide a general
indication of regions in which the equations do not hold. A reasonable choice
of exact solution would be to begin at the first observation point:

20

smooth = cell2mat(eval_fdcell(0:0.05:20,DEfd));
new_path = ode45(0:0.05:20,odefn,smooth(1,:),[],newpars);

for(i in 1:size(smooth,2))
subplot(size(smooth,2),1,i)
plot(0:0.05:20,smooth(:,i),’b’)
plot(0:0.05:20,new_path(:,i),’r’)
plot(Tcell{i},Ycell{i},’g.’)

end

However, the discrepancy of the result will not generally provide a good
indication of how the right hand side may be changed to make the fit better.
This is best done by estimating external forcing functions that will make the
differential equation fit the data. Adding

ẋ− f(x, t, θ)

to the right hand side makes the differential equation exact for an estimated x.
However, this diagnostic is likely to be biassed since x is already smoothed to
be close to an exact solution. This diagnostic also unavailable for systems with
unobserved variables.

Rather, once an estimate of θ is arrived at, we need to estimate a forcing
function that will create a smooth that will make x fit both the (forced) dif-
ferential equation and the data well. This forcing function can then be plotted
against the fitted paths x, derivatives of those paths or external factors. De-
composition techniques such as Independent Variables Analysis or functional
Principle Variables Analysis may also provide useful insights into how the dif-
ferential equation should be modified.

Such a forcing function may be estimated by expressing it as a basis expan-
sion and treating its coefficients as parameters to be estimated in the profiling
scheme already shown. In doing this, the right hand side of the differential equa-
tion, including parameters, should remain fixed. This is because any change in
the right hand side can be compensated for by changing the forcing functions
accordingly.

10.1 Forcing Linear Systems

Where the original differential equations are linear, the profiling procedure
can be solved as a linear system. The following function will do this:

[smooths,forces] = linforceest((basis cell,pbasis cell,A,...
whichindex,lambda,lambdap,f lfd,Tcell,Ycell,wts,force,...
force_extra)

The inputs follow the usual conventions, with the following new entries:

basis cell A cell array of basis objects for representing solutions to the forced
differential equation.

21

pbasis cell A cell arrray of basis objects for representing forcing functions.

A The matrix in the differential equation

ẋ = Ax + f

whichindex A vector giving the indeces of x which should be assumed to be
forced. If this is not specified, it is assumed to be the first index up to the
number of entries in pbasis cell

lambdap A penalty parameter for a roughness penalty on the estimated forcing
functions. Should normally be zero.

f lfd The linear differential penalty for penalizing the forcing function.

force Already known forcing variables, given as a handle to a function that
accepts a vector of times and possibly one further argument and returns
the value of the forcing variable at the times specified.

force extra An optional extra variable to be input into force.

The result of the function call are two cell arrays of functional data objects:

smooths represents the smooths to the data.

forces the estimated forcing variables.

10.2 Forcing General Differential Equations

Where the already estimated differential equation is non-linear, however, a
Gauss-Newton scheme must be employed as before. For this situation, we regard
the coefficients in the basis expansion as parameters and proceed with the usual
profiled estimation scheme. In order to facilitate this, the following right-hand
side functions have already been written

fn.fn = @forcingfun; % RHS function
fn.dfdx = @forcingdfdx; % Derivative wrt inputs (Jacobian)
fn.dfdp = @forcingdfdp; % Dervative wrt parameters
fn.d2fdx2 = @forcingd2fdx2; % Hessian wrt inputs
fn.d2fdxdp = @forcingd2fdxdp; % Hessian wrt inputs and parameters
fn.d2fdp2 = @forcingd2fdp2; % Hessian wrt parameters.
fn.d3fdx3 = @forcingd3fdx3; % 3rd derivative wrt inputs.
fn.d3fdx2dp = @forcingd3fdx2dp; % 3rd derivative wrt intputs and pars.
fn.d3fdxdp2 = @forcingd3fdxdp2; % 3rd derivative wrt inputs and pars.

% dimensions = time, variable, input,
% parameters

These require fn extras to be specified. This should be a struct with the
following fields:

22

moreinfo.fn = fn; % Original right hand side function
moreinfo.dfdx = dfdx; % Original RHS derivative wrt inputs
moreinfo.d2fdx2 = d2fdx2; % Original RHS Hession wrt inputs
moreinfo.d3fdx3 = d3fd2x; % Original third derivative

fh_extra.pars = pars; % Parameters to input to original system
moreinfo.extras = extras; % Original moreinfo input into fn

moreinfo.basisp = basisp; % Basis representation of forcing functions
moreinfo.which = which; % Which variables will be forced?

Forcing functions can then be estimated by the usual call to Profile GausNewt.

[coefs,smooths] = Profile_GausNewt(pars,lsopts_out,DEfd,fn,...
lambda,Ycell,Tcell,wts,alg,lsopts_in,moreinfo,...
pen,dpen,pen_extras);

The forcing variables can then be recovered by

forces = Make_fdcell(coefs,basisp);

Note that it is here where the entries pen, dpen and pen extras are often
used. d2pen is also needed if you are estimating a Hessian matrix for the
parameters. These can be supplied as

pen = @forcingpen;
dpen = @forcingdpen;
d2pen = @forcingd2pen;
pen_extras.basis = basisp;
pen_extras.deg = 2;
pen_extras.lambda = 0.01;

which provides a penalty on the squared integral of the pen extras.deg deriva-
tive of the forcing function, with smoothing parameter pen extras.lambda.

11 Predefined Right Hand Side Systems

11.1 Forced, Linear Systems

Where a differential equation model is not known, and we have sufficient
data, it is possible to build a model to represent the data in much the same way
that linear models are developed in ordinary least-squares regression. In the
case of differential equations, a linear differential equation takes the place of the
linear regression model and estimated forcing functions are used as diagnostics
in place of residuals. In addition to the autonomous system, there may be known
forcing variables and these may also be allowed to enter the model linearly. The
linear system is then written as

23

ẋ = Ax+Bu

where u are known inputs. The entries in the matrices A and B then need to
be estimated, although some may be known.

Functions to estimate linear differential equations are provided by

fn.fn = @genlinfun; % RHS function
fn.dfdx = @genlindfdx; % Derivative wrt inputs (Jacobian)
fn.dfdp = @genlindfdp; % Dervative wrt parameters
fn.d2fdx2 = @genlind2fdx2; % Hessian wrt inputs
fn.d2fdxdp = @genlind2fdxdp; % Hessian wrt inputs and parameters
fn.d2fdp2 = @genlind2fdp2; % Hessian wrt parameters.
fn.d3fdx3 = @genlind3fdx3; % 3rd derivative wrt inputs.
fn.d3fdx2dp = @genlind3fdx2dp; % 3rd derivative wrt intputs and pars.
fn.d3fdxdp2 = @genlind3fdxdp2; % 3rd derivative wrt inputs and pars.

% dimensions = time, variable, input,
% parameters

These may be used directly. However, the fn extras object may be used
to alter the estimation scheme. It should be a matlab struct and may contain
some of the following entries

fixed entries The following may be used when some of the entries in the matrix
defining the differential equation are known and fixed.

mat A matrix representing a default matrix A. Parameters are estimated
with respect to this; assumed zero if not present.

sub a two-dimensional array giving the indices of the entries in fn extra.mat
to be estimated. Assumed to be all of them.

forcing functions the following specify forcing functions which enter the dif-
ferential equation linearly, but which may also depend on the parameters.

force should be a cell vector of functions accepting a vector of times t,
parameters p and extra input arguments, each should output a vector
giving the value of the forcing function at times t. Alternatively, if
any element is a functional data object, it is evaluated at times t.

force mat a default matrix for B – assumed to be zero if not specified.
Parameters are estimated with respect to this matrix.

force sub a two-dimensional array giving the entries in B which corre-
spond to parameters. This is assumed to give the diagonal of B if
not specified.

force input extra input information to the forcing functions. May be
specified in any manner.

24

11.2 Univariate polynomial functions

A final set of functions are provided that allow polynomial right hand side
functions to be estimated for single-variable systems with forcing functions that
enter linearly. These are given by

fn.fn = @polyfun; % RHS function
fn.dfdx = @polydfdx; % Derivative wrt inputs (Jacobian)
fn.dfdp = @polydfdp; % Dervative wrt parameters
fn.d2fdx2 = @polyd2fdx2; % Hessian wrt inputs
fn.d2fdxdp = @polyd2fdxdp; % Hessian wrt inputs and parameters
fn.d2fdp2 = @polyd2fdp2; % Hessian wrt parameters.
fn.d3fdx3 = @polyd3fdx3; % 3rd derivative wrt inputs.
fn.d3fdx2dp = @polyd3fdx2dp; % 3rd derivative wrt intputs and pars.
fn.d3fdxdp2 = @polyd3fdxdp2; % 3rd derivative wrt inputs and pars.

% dimensions = time, variable, input,
% parameters

The order of the polynomial is assumed to be the length of the parameter
vector minus one, with the final parameter being a co-efficient of the forcing
function. Forcing functions are specified in fn extras.forcing. This should be
a function which takes in a vector of times and additional object fn extras.fs
and outputs a vector of values. If fn extras is not given, the system is assumed
to be forced with a constant 1.

25

References

Beuter, A., Glass, L., Mackey, M. C. and Titcombe, M. S. (2003) Nonlinear
Dynamics in Physiology and Medicine. New York: Springer.

Ramsay, J. O. and Silverman, B. W. (2005) Functional Data Analysis, Second
Edition. New York: Springer.

Ramsay, J. O., Hooker, G., Cao, J. and Campbell, D. (2007) Estimating differ-
ential equations, with discussion. Journal of the Royal Statistical Society,
Series B, To appear.

26

