
IPOPT and Neural Dynamics

Tips, Tricks and Diagnostics

G. Hooker and L. Biegler

Abstract

We describe the process of fitting a phenomenological model for the
spiking behavior of a zebra-fish neuron using the IPOPT routines de-
scribed in Wächter and Biegler 2006. These routines provide a computa-
tionally efficient methods for estimating parameters in nonlinear differen-
tial equations. However, convergence to global solutions is not guaranteed
and we describe a number of strategies that were necessary to obtain pa-
rameter estimates from these data. The intention of fitting these data was
to improve on the phenomenological models used. The use of diagnostic
techniques with IPOPT software is also described.

1 Introduction

There has been increasing interest in performing inference for systems governed
by nonlinear ordinary differential equations. See, for example, Ramsay et al.
2007, Ionides et al. 2006 and Huang et al. 2006 for some of the many recent
developments. Estimating parameters for such systems has been a computation-
ally challenging exercise, made difficult by the lack of explicit descriptions of a
system trajectory, the sensitivity of estimated trajectories to numerical errors
and the complex dependence of trajectories on system parameters. Many of
the methods developed to estimate parameters in such systems require careful
tuning in order to converge on good estimates.

This paper presents a case study of the use of the IPOPT routines (Wächter
and Biegler 2006) to solve a parameter estimation problem in neural dynamics.
These routines use a collocation method to represent solutions to the system
trajectories. They attempt to jointly optimize the system while solving col-
location equations, leading to a constrained optimization problem. Here, we
apply IPOPT to data collected from a single-neuron patch clamp experiment.
The system used to describe the data is linear in the parameters. Nonethe-
less, finding optimal parameter values is a numerically challenging problem for
which straightforward gradient descent methods failed. IPOPT, by contrast,
succeeded in finding parameter estimates, but a number of modifications to the
original problem were required before it converged. The purpose of this paper
is to elucidate these modifications as strategies to achieve better performance
from constrained optimization routines.

1

In the numerical difficulties of estimating parameters for nonlinear systems
are exacerbated by a poor agreement between theoretical descriptions of a sys-
tem and empirical measurements taken of it. This makes good data-driven
techniques for suggesting improvements to such models an important area of
research. This problem was considered in order to demonstrate the use of esti-
mated forcing functions as diagnostic tools. A more detailed description of these
ideas is given in (Hooker 2007). We demonstrate the application of IPOPT in
implementing these methods to obtain an improved model for the zebrafish data.

2 Data and Models

A patch clamp experiment allows the study of neural behavior by measuring
the potential along the axon membrane of a neuron. The result of such an
experiment performed on a zebra-fish motor neuron are given in Figure 1. Here,
an input current was stepped up from zero and then returned to zero. The
neuron responds by firing a series of action potentials – the long series of spikes
– and ceases when the current is shut off. Neurons can exhibit a wide range of
behaviors, including hysteresis – or continuing to spike after the stimulus has
been removed and bursts – or groups of spikes between longer periods of no
activity. A great deal of work has been done in producing models to mimic
these behaviors.

Broadly, models for neural behavior fall into two classes; complex descrip-
tions based on physiological properties and simplifications that capture the qual-
itative features of physiological models. See Wilson (1999) for an introductory
overview of the field. These simplifications are frequently desirable to work with
in being more tractable for mathematical analysis, and computationally cheaper
to simulate. Our task here will be to assess and improve the quantitative per-
formance of these simplified models.

As a starting point, we use the following system of equations:

dV

dt
= fV (V,R, p) = p1 + p2V + p3V

2 + p4V
3 + p5R + p6V R (1)

dR

dt
= fR(V,R, r) = r1 + r2V + r3R (2)

V (0) = V0, R(0) = R0 (3)

Here V represents the transmembrane potential while R is a recovery variable
representing a collection of ion currents. Equations of this form are derived
in Wilson (1999) by inspection of the isoclines of the Rinzel equations Rinzel
and Keller (1973), in turn a simplification of the Hodgkin-Huxley equations
(Hodgkin and Huxley 1952). Equation (1) expands the products of polynomial
terms given in Wilson (1999). The products are meant to represent approx-
imations to elements of the original Rinzel system, but the forms above are
considerably more tractable and do not affect the number of parameters in the
model.

2

Initial parameter estimates for these equations were obtained by taking pa-
rameter values in Wilson (1999) and re-scaling so that the estimated solutions
for V take the same range as those found in the data. This may be done through
the observation that

d

dt
(aV + b) = af

(
(aV + b)− b

a

)
. (4)

When f is polynomial in V and linear in its parameters as in (4), this transfor-
mation does not change its form. The parameters were then further transformed
so that the solutions for V exhibited the same period as the observed data. This
is achieved through:

d

dt
V (kt) = k

d

ds
V (s)

for s = kt. This also leaves the form of f unchanged.
Finally, we observe that (4) can also be applied to R. Since no measurements

are available for R, the transform is left unconstrained and was instead chosen
so that R has approximately the same range as V . This has been done in order
to improve the numerical stability of the estimation procedure. This observation
also implies that only one of r1, r2 and r3 may be estimated from our data.

3 Collocation Methods, Solution Trajectories and
IPOPT

The methods chosen to fit the model and these data employ the IPOPT routines
for constrained optimization described in Wächter and Biegler (2006) along with
a collocation method. Here the system is broken into K small intervals; we used
1000 intervals of one unit each. Within each interval [ti ti+1], the derivative of
the the trajectory is interpolated by Lagrange polynomials, Lij(t):

V̇ (t) =
s∑

j=1

V̇ (cij)Lij(t) =
s∑

j=1

fV (V (cij), R(cij), p)Lij(t)

Ṙ(t) =
s∑

j=1

Ṙ(cij)Lij(t) =
s∑

j=1

fR(V (cij), R(cij), r)Lij(t)

where cij are chosen to be s Gauss-Radau quadrature points cij = ti + (ti+1 −
ti)ρj with ρj ∈ [0, 1] and ρs = 1. For the system above, we selected s = 3. This

3

leads to the representation of the solution at the collocation points:

V (cij) = V (ti) +
s∑

k=1

fV (V (cik), R(cik), p)
∫ cij

ti

Lik(t)dt

= V (ti) +
s∑

k=1

AikfV (V (cik), R(cik), p) (5)

R(cij) = R(ti) +
s∑

k=1

fR(V (cik), R(cik), r)
∫ cij

ti

Lik(t)dt

= R(ti) +
s∑

k=1

AikfR(V (cik), R(cik), r) (6)

V (0) = V0, R(0) = R0

for a collocation matrix A. Equations (5) and (6) now represent 2Ks equations
in the 2Ks unknowns, {V (cij), R(cij)}. Solving for these has been shown to
be equivalent to using fully implicit Runge-Kutta methods for estimation of
solutions to equations such as (1,2). See Deuflhard and Bornemann (2000).

Parameter estimation via the IPOPT routines now attempts to find a solu-
tion to (5,6) while at the same time minimizing the squared error criterion over
parameters p and r.

SSE(p, r) =
N∑

i=1

(vi − V (ti))2 (7)

for observations vi given at times ti. The resulting parameter estimation prob-
lems can be expressed as large-scale, structured NLP problems of the form,

min f(x)
s.t. c(x) = 0

xL ≤ x ≤ xU (8)

where x ∈ <nx represents all the variables in the system; the discretized esti-
mates of the states, V (cik), R(cik) as well as any parameters in p, r, V0 and R0

which are to be estimated. f(x) is then just (7) while c(x) is given by (5)-(6).
xL and xU represent lower and upper bounds on these variables which have not
been imposed here, but will be useful later.

Using IPOPT, the NLP problem (8) is transformed by adding logarithmic
barrier functions to the objective,

min ϕµ(x) = f(x)− µ

[
nx∑
i=1

ln
(
x(i) − x

(i)
L

)
+

nx∑
i=1

ln
(
x

(i)
U − x(i)

)]
s.t. c(x) = 0 (9)

where µ is a barrier parameter satisfying µ > 0. Under mild regularity con-
ditions, solutions of (9) converge to the solution of (8) as µ → 0. Moreover,

4

the primal-dual optimality conditions of (9) resemble those of the original NLP
problem and are defined by,

∇xf(x) +∇xc(x)λ− νL − νU = 0
c(x) = 0

(X −XL)VLe− µ e = 0
(XU −X)VUe− µ e = 0 (10)

where X, XL, XU , VL, VU ∈ <nx×nx are diagonal matrices whose diagonal entries
are the components of x, xL, xU , νL and νU , respectively; e = [1, 1, . . . , 1]T ∈
<nx, λ is the vector of Lagrange multipliers for the equality constraints; and
νL, νU ∈ <nx is an estimate of the multipliers for the bound constraints of the
original NLP problem. The optimality conditions can be solved efficiently by
applying Newton’s method, which requires the solution of a large and sparse
linear system at each iteration given by,[

∇x,xLk + Σk ∇xc(xk)
∇xc(xk)T 0

](
∆xk

∆λk

)
= −

(
∇ϕu(xk) +∇c(xk)λk

c(xk)

)
(11)

where Lk is the Lagrangian function of the original NLP problem (8) evaluated
at iteration k, Σk is defined by,

Σk = (Xk −XL)−1V k
L − (XU −Xk)−1V k

U (12)

and the bound multipliers are updated at each iteration from,

∆νk
L = (Xk −XL)−1(µ e− V k

L ∆xk)− νk
L (13)

∆νk
U = (XU −Xk)−1(µ e + V k

U ∆xk)− νk
U (14)

The solution of linear system (11) is the core step of the optimization algorithm
and requires most of the computational time. This linear system can be solved
efficiently by sparse, symmetric, indefinite solvers.

Convergence to local optima, starting arbitrarily far away, is promoted using
a novel filter line search strategy. Line search methods require the Hessian
matrix Hk = ∇x,xLk + Σk to have strictly positive curvature in the null space
of the linearized constraint gradients. Moreover, under the assumption that
∇xc(xk) has full rank, the projection of Hk onto the null space of ∇T

x c(xk) is
positive definite if and only if the iteration matrix in (11) has n positive and m
negative eigenvalues. However, due to severe nonlinearity on the problem or non-
informative data, respectively, the linear independence and positive curvature
conditions, may not hold at intermediate iterations, and the matrix in (11)
becomes singular. To correct for this, IPOPT adds diagonal correction terms
to the (so-called KKT) matrix in (11), leading to:[

∇x,xLk + Σk + δ1I ∇xc(xk)
∇xc(xk)T −δ2I

]
(15)

5

with δ1, δ2 > 0. In order to detect whether a modification of the Hessian is nec-
essary, the inertia of this iteration matrix (i.e., the number of positive, negative
and zero eigenvalues) can be calculated from the linear solver and monitored
by the algorithm (Wächter and Biegler 2006). Moreover, if the diagonal terms
δ1, δ2 are zero at the solution, then sufficient second order optimality conditions
hold. From a statistical perspective, this gives the important result that the
parameters have been uniquely determined, and the data are sufficiently infor-
mative.

IPOPT is open-source software and can be downloaded from:
http://projects.coin-or.org/Ipopt.

A set of AMPL templates that describes the collocation formulation for a small
reactor optimization problem can be found on:

http://www.andrew.cmu.edu/user/vzavala/dynopt.html.

4 Estimating Parameters in Zebra-fish Data with
IPOPT

Parameters were fit to the data via the collocation method combined with
IPOPT as described above. Due to the nonlinearities in both the constraints
and the parameters, the solution of the constrained problem may be slow to con-
verge and runs some risk of failure, even with the compensating parameters δ1

and δ2 in (15). A number of strategies can be used to improve this performance,
especially in preventing ill-conditioning of the matrix in (15):

• Add loose bounds to the state variables and parameters. Even though they
are not active at the optimum, the bounds contribute positive entries to
Σ in (15) and promote positive curvature of the reduced Hessian.

• For overparametrized problems, estimation with a reduced set of param-
eters will lead to a positive reduced Hessian in the neighborhood of the
optimum. Such problems are much better conditioned and much easier to
converge. Hence we use the following heuristic:

– Fix a set of parameters, solve the NLP and solve a sequence of
problems by systematically “unfixing” parameters. This procedure
generates a monotonically decreasing sequence of SSE((p, r) values
through the solution of well-conditioned subproblems. Moreover,
along with the regularization parameters δ1, δ2, these partial solu-
tions are excellent initializations that promote faster convergence of
the overall problem.

These techniques were employed for the equations above.

6

Figure 1: A least squares fit to the Rinzle equations estimated using the IPOPT
constrained optimization routines.

• Constraints that −50 ≤ V ≤ 50 and 10 ≤ R ≤ 50 were imposed. These
bounds are comfortably outside the observed values of V and the values
of R at the initial parameter estimates.

• The parameters were estimated by sequentially unfixing two parameters at
a time. That is, first optimizing for V0, R0 with the remaining parameters
held fixed. Then p1 and p2 were also relaxed, leading to a four-parameter
optimization and so forth.

As noted in Section 2, r1 and r2 are unidentifiable in this system and were held
constant throughout. Additional parameters representing the initial conditions
for V and R were also estimated as parameters in this scheme.

Under this scheme, the system converged with a reduction in squared error
from 17465.2 to 6710.4. A representation of the final estimated trajectories is
given in Figure 1. While the general characteristics of the observed data are
maintained, some of the dynamics of the system are not captured. The peaks
are consistently underestimated and a strong elbow at the end of the peak is
not present in the data. Details of the implementation of the estimation scheme
using the AMPL modeling language are provided in the appendix and electronic
supplement.

7

Figure 2: From left to right: lack of fit forcing functions for V , plotted against
estimated trajectories for V and R.

5 Diagnostics

In order to improve this simple set of equations, a diagnostics forcing function
was estimated for V . That is (1) was modified to

V̇ = p1 + p2V + p3V
2 + p4V

3 + p5R + p6V R + g(t)

g(t) =
k∑

i=1

φi(t)bi

where the φi are 202 equi-spaced linear B-splines on the interval [0, 1000] and
the bi were estimated using the IPOPT routines again with the parameters
p, r, V0, R0 held fixed at their estimated values. The addition of forcing functions
on R was also considered, but did not provide the interpretable results found
below.

The resulting fit to the data and the estimated g(t) are given in Figure 2.
Here g(t) demonstrates a consistent cycle. In order to represent it, we treat g(t)
as a residual and plot it against the estimated values of V and R. This plot
provides a diagnostic for consistent functional relationships that are missing
from the original model equations. In this case, we have chosen to divide the
(V,R) phase space in two around the indicated dashed line. On either side of
the line, an approximately cubic function provides a reasonable description for
lack of fit and there are relatively fast transitions between the two.

Accordingly, we have modified (1) to allow different parameters on either
side of a line V = c0 + c1R, chosen by visual inspection of a three-dimensional
plot. These are tied together by a logistic transition, resulting in:

dV

dt
= θ1 + θ2V + θ3V

2 + θ4V
3 + θ5R + θ6V R (16)

θi = pi +
qi

1 + exp(c3(V − c1 + c2R))
. (17)

Here the denominator in (17) controls the transition between parameters pi and
parameters pi + qi. The transition happens across the line

8

Figure 3: A least squares fit to the Rinzle equations estimated using the IPOPT
constrained optimization routines.

V = c1 + c2R

and c3 controls the rate at which it occurs. These parameters were initially
set naively via a least-squares fit between the estimated V,R and g(t). The
parameters p, q and r were then re-scaled to provide the same average period
of the data using the Matlab function ode45. The resulting fit is plotted in
Figure 3. Here we note that least squares fitting may lead to errors; the spikes
in the data clearly do not occur at exactly equal intervals and this will tend
to encourage wider peaks than desired. Although providing a good qualitative
agreement with the data, these solutions are, in fact, worse in squared-error
terms than those found for the original equations.

The modified model was re-estimated to data using the IPOPT routines and
a certain amount of experimentation. Not all parameters could be estimated
jointly within an evening of manually trying various sequences of fixing and
unfixing parameters. The best results decreased squared error by more than
a factor of 10 to 45.57. The resulting smooth is plotted in Figure 4, along
with an estimated forcing function that demonstrates considerably less pattern.
However, the resulting solutions represent unstable limit cycles that eventu-
ally decay; indicating that more analysis is needed to develop simple, tractable
models.

9

Figure 4: Left: modified Wilson equation fit with least squares. Right: lack of
fit on the derivative scale for the modified Wilson equations; little pattern is
evident.

6 Conclusion

We have examined the use of the IPOPT constrained nonlinear optimization rou-
tines for estimating parameters and performing diagnostics for a simple system
of differential equations designed to describe the spiking behavior of zebra-fish
motor-neurons. IPOPT provides an efficient means of performing this estima-
tion; however, obtaining convergence can require some problem-specific fine-
tuning. Particularly useful techniques inclued

• Imposing loose boundary conditions on the state variables. Although these
are not active in the final solution, they help improve the conditioning of
the system at intermediate steps.

• Successively increase the set of parameters to be optimized. This helps
to keep the Hessian positive definite and provides a sequence of good
initialization values for the next optimization problem.

• Consider transformations of the system. These have not been employed
here, but the log transform

d

dt
x = f(x), y = log(x) ⇒ d

dt
y = e−yf (ey)

is commonly found to make system trajectories easier to solve, particularly
when they involve large values of f(x).

Additionally, these routines proved highly efficient in providing diagnostics
in the form of estimated forcing functions. The AMPL interface to IPOPT,
described in the Appendix, allows parameter estimation, diagnostics and system
modifications to be implemented in a straightforward manner.

10

Acknowledgements

The zebra fish data were kindly provided by Joe Fetcho’s laboratory at the
Biology Department of Cornell University.

References

Deuflhard, P. and F. Bornemann (2000). Scientific Compuitng with Ordinary
Differential Equations. New York: Springer-Verlag.

Fourer, R., D. M. Gay, and B. W. Kernighan (2003). AMPL: a Modeling
Language for Mathematical Programming. Pacific Grove: Brooks/Cole -
Thomson Learning.

Hodgkin, A. L. and A. F. Huxley (1952). A quantitative descripotion of mem-
brane current and its application to conduction and excitation in nerve.
J. Physiol. 133, 444–479.

Hooker, G. (2007). Forcing function diagnostics for nonlinear dynamics. un-
published.

Huang, Y., D. Liu, and H. Wu (2006). Hierarchical bayesian methods for es-
timation of parameters in a longitudinal hiv dynamic system. Biometrics.

Ionides, E. L., C. Bretó, and A. A. King (2006). Inference for nonlinear dy-
namical systems. Proceedings of the National Academy of Sciences.

Ramsay, J. ., G. Hooker, D. Campbell, and J. Cao (2007). Parameter estima-
tion in differential equations: A generalized smoothing approach. Journal
of the Royal Statistical Society, Series B (with discussion).

Rinzel, J. and J. B. Keller (1973). Traveling wave solutions of a nerve con-
duction equation. Biophysical Journal 13 (12), 13131337.

Wächter, A. and L. T. Biegler (2006). On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming.
Mathematical Programming (106), 25–57.

Wilson, H. R. (1999). Spikes, decisions and actions: the dynamical founda-
tions of neuroscience. Oxford: Oxford University Press.

A AMPL Model Code

The figures were fit using the AMPL interface to IPOPT. AMPL is mathematical
modeling software available from

http://www.ampl.com.
A more complete description of AMPL is given in Fourer et al. 2003. The

AMPL interface requires a model file to describe the parameters and relation-
ships in the model; the model file for the initial parameter estimation problem is
given in Appendix A.1. A data file defining constants and initialization values is
given in Appendix A.2. Appendix A.3 provides AMPL output code to write the

11

output of the model to a Matlab file for visualization. A set of commands for
running this initial code, including the addition of constraints and sequentially
unfixing parameters, is in Appendix A.4.

In addition to the code provided in the appendices, data files from the exper-
iment are required. Further model estimation and diagnostics also require files
defining the values of basis functions at the Gauss-Radau quadrature points. An
archive providing all the files and code necessary to replicate the experiments
described in this paper may be found at

http://www.bscb.cornell.edu/~hooker
or by e-mailing giles.hooker@cornell.edu.

A.1 Model File

#===
wilsonfit.run
#
This file provides the ampl commands to run parameter estimation
and diagnostics on the Wilson equations.
#
Giles Hooker, June 2007
#===

First of all a model declaration

reset ; # Reset memory
option solver ipopt ; # Select IPOPT as a solver
options ipopt_options "ma27_pivtol=1e-10" ; # Change the tolerances

model wilsonfit.mod ; # Model declaration

data wilson_feas.dat ; # Read in feasible points
data zebrafish.dat ; # Read in observational data
data forcingbasis.dat ; # Basis expansion to estimate forcing functions
data scoefV.dat ; # Initial coefficients for the forcing functions
data spars.dat ; # Initial parameter estimates

data wilsonfit.dat ; # Initialize collocation matrix and variables

include exportbasis.inc ; # Gets the basis values into a matlab-readable data file
this only needs to be run once

We will put some constraints on the state space to help numerical
stability

12

let rl := 10 ;
let ru := 50 ;
let vl := -50 ;
let vu := 50 ;

Now try to find a solution to the ODE at the current parameter values

fix p ;
fix r ;
fix y ;
fix coefV ;
solve ;

include wilsonfit1.inc ; # Export intial estimates to Matlab

Sequentially unfix parameters to get an optimization.

unfix y[1]; unfix y[2]; solve; # First let the initial conditions vary

unfix p[1]; unfix p[2]; solve;
unfix p[3]; unfix p[4]; solve;
unfix p[5]; unfix p[6]; solve;

unfix r[2]; solve; # Only r2 is identifiable here

include wilsonfit2.inc; # Export estimates with fitted parameters to Matlab

Now fit a forcing function to the V component to try some diagnostics

fix p ;
fix r ;
fix y ;
unfix coefV ;
solve ;

include wilsonfit3.inc; # Export diagnostics to matlab

------------------- End of wilsonfit.run ----------------------

A.2 Data File

===
dynamic optimization and diagnostics for the Wilson equations
data declaration
Giles Hooker, June 2007

13

===

collocation matrix

param a: 1 2 3 :=
1 0.19681547722366 0.39442431473909 0.37640306270047
2 -0.06553542585020 0.29207341166523 0.51248582618842
3 0.02377097434822 -0.04154875212600 0.11111111111111;

finite element parameters

let nfe := 1000 ;
let ncp := 3 ;

let time := 1 ;

let r1 := 0.15505102572168 ;
let r2 := 0.64494897427832 ;
let r3 := 1 ;

data points

let npts := 1001 ;
let nbase := 202 ;

initial guesses for parameter values

for {i in parsp}{
let p[i] := pstart[i];

}

for {i in parsr}{
let r[i] := rstart[i];

}

for {i in parsy}{
let y[i] := ystart[i];

}

initial guesses of the decision variables

for {i in pts} {let wvals[i] := 1 } ;

14

for {i in base}
{

let coefV[i] := ccoefV[i] ;
}

for {i in fe}
{

for {j in cp}
{

let R[i,j] := Rstartvals[i] ;
let V[i,j] := Vstartvals[i] ;

}
let h[i] := tvals[i+1]-tvals[i] ;
}

#-- end of the wilsonfit.dat file -

A.3 Output File

===
diagnostics for the Wilson equations
create results file for Matlab
#
Giles Hooker, June 2007
===

final parameter values

printf "% final co-efficient values" >>wilsonfit.m;
printf "\n\n" >>wilsonfit.m;

printf "coefV=[" >>wilsonfit.m;
printf {j in base}:
"%5.5f ",coefV[j]>>wilsonfit.m;
printf "]’;\n\n" >>wilsonfit.m;

#display variables and parameters

printf "% display variables and parameters" >>wilsonfit.m;
printf "\n\n" >>wilsonfit.m;

printf "V3=[" >>wilsonfit.m;
printf "%5.5f ",y[1]>>wilsonfit.m;
printf {j in fe,k in cp}:

15

"%5.5f ",V[j,k]>>wilsonfit.m;
printf "]’;\n\n" >>wilsonfit.m;

printf "R3=[" >>wilsonfit.m;
printf "%5.5f ",y[2]>>wilsonfit.m;
printf {j in fe,k in cp}:
"%5.5f ",R[j,k]>>wilsonfit.m;
printf "]’;\n\n" >>wilsonfit.m;

printf "Vdot3=[" >>wilsonfit.m;
printf {j in fe,k in cp}:
"%5.5f ",Vdot[j,k]>>wilsonfit.m;
printf "]’;\n\n" >>wilsonfit.m;

printf "Rdot3=[" >>wilsonfit.m;
printf {j in fe,k in cp}:
"%5.5f ",Rdot[j,k]>>wilsonfit.m;
printf "]’;\n\n" >>wilsonfit.m;

plot the results

printf "% plot the results" >>wilsonfit.m;
printf "\n\n" >>wilsonfit.m;

printf "figure(3)\n" >>wilsonfit.m;
printf "subplot(2,1,1)\n" >>wilsonfit.m;
printf "plot(time,V3,’r’)\n" >>wilsonfit.m;
printf "hold on\n" >>wilsonfit.m;
printf "plot(tvals,Vobs,’.’)\n" >>wilsonfit.m;
printf "hold off\n" >>wilsonfit.m;
printf "xlabel (’time’)">>wilsonfit.m; printf ";\n">>wilsonfit.m;
printf "ylabel (’V’)">>wilsonfit.m; printf ";\n">>wilsonfit.m;
printf "subplot(2,1,2)\n" >>wilsonfit.m;
printf "plot(time,R3,’r’)\n" >>wilsonfit.m;
printf "xlabel (’time’)">>wilsonfit.m; printf ";\n">>wilsonfit.m;
printf "ylabel (’R’)">>wilsonfit.m; printf ";\n">>wilsonfit.m;
printf "\n" >>wilsonfit.m;

Set up diagnostic plots based on forcing functions

printf "% Now lets look at forcing diagnostics" >>wilsonfit.m;
printf "\n\n" >>wilsonfit.m;

printf "% First of all, we need to find the values of the forcing functions" >>wilsonfit.m;
printf "\n\n" >>wilsonfit.m;

16

printf "% Load in basis values at the collocation points" >>wilsonfit.m;
printf "\n\n" >>wilsonfit.m;

printf "bvals = load(’basisvals.dat’);\n" >>wilsonfit.m;
printf "\n" >>wilsonfit.m;

printf "% Now turn these into forcing functions" >>wilsonfit.m;
printf "\n\n" >>wilsonfit.m;

printf "V_forcing = bvals*coefV;\n" >>wilsonfit.m;
printf "\n" >>wilsonfit.m;

printf "% Plot them" >>wilsonfit.m;
printf "\n\n" >>wilsonfit.m;

printf "figure(4)\n" >>wilsonfit.m;
printf "plot(time,V_forcing)\n" >>wilsonfit.m;
printf "\n" >>wilsonfit.m;

printf "% Now a diagnostic plot" >>wilsonfit.m;
printf "\n\n" >>wilsonfit.m;

printf "figure(5)\n" >>wilsonfit.m;
printf "plot3(V3,R3,V_forcing)\n" >>wilsonfit.m;
printf "xlabel(’V’,’fontsize’,20)\n" >>wilsonfit.m;
printf "ylabel(’R’,’fontsize’,20)\n" >>wilsonfit.m;
printf "title(’Diagnostics for V forcing’,’fontsize’,20)\n" >>wilsonfit.m;
printf "\n" >> wilsonfit.m;

printf "% End of wilsonfit3" >>wilsonfit.m;
printf "\n\n\n" >>wilsonfit.m;

close wilsonfit.m;
printf "output written to matlab m-file: wilsonfit.m ...\n";

#-- end of the wilsonfit3.inc file -

A.4 Running Code

#===
wilsonfit.run
#
This file provides the ampl commands to run parameter estimation
and diagnostics on the Wilson equations.
#
Giles Hooker, June 2007

17

#===

First of all a model declaration

reset ; # Reset memory
option solver ipopt ; # Select IPOPT as a solver
options ipopt_options "ma27_pivtol=1e-10" ; # Change the tolerances

model wilsonfit.mod ; # Model declaration

data wilson_feas.dat ; # Read in feasible points
data zebrafish.dat ; # Read in observational data
data forcingbasis.dat ; # Basis expansion to estimate forcing functions
data scoefV.dat ; # Initial coefficients for the forcing functions
data spars.dat ; # Initial parameter estimates

data wilsonfit.dat ; # Initialize collocation matrix and variables

include exportbasis.inc ; # Gets the basis values into a matlab-readable data file
this only needs to be run once

We will put some constraints on the state space to help numerical
stability

let rl := 10 ;
let ru := 50 ;
let vl := -50 ;
let vu := 50 ;

Now try to find a solution to the ODE at the current parameter values

fix p ;
fix r ;
fix y ;
fix coefV ;
solve ;

Sequentially unfix parameters to get an optimization.

unfix y[1]; unfix y[2]; solve; # First let the initial conditions vary

unfix p[1]; unfix p[2]; solve;
unfix p[3]; unfix p[4]; solve;
unfix p[5]; unfix p[6]; solve;

18

unfix r[2]; solve; # Only r2 is identifiable here

Now fit a forcing function to the V component to try some diagnostics

fix p ;
fix r ;
fix y ;
unfix coefV ;
solve ;

include wilsonfit3.inc; # Export diagnostics to matlab

------------------- End of wilsonfit.run ----------------------

19

